Skip to main content
Log in

Machinability of Stellite-6 Coatings with Ceramic Inserts and Tungsten Carbide Tools

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the machinability of Stellite-6 coating material was examined. For this purpose, Stellite-6 coating materials and two different types of cutting tool materials (ceramics and tungsten carbide) were used. The performance of the tool materials in the turning operation was analyzed. Two materials were compared in terms of surface roughness in different cutting speeds and feed rates. Taguchi method was used for the analysis of relationship between the surface quality and the cutting parameters. The estimated values were very close to the results of the experimental tests. Experimental and analysis results showed that whisker-reinforced ceramic insert was more suitable than tungsten carbide cutting tool for the machining of Stellite-6 coating material in terms of surface roughness. The objective of this study is to determine the ideal conditions and optimum machinability parameters for Stellite-6 coating material and to explore the appropriate cutting tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elanayar S., Shin Y.C.: Modeling of tool forces for worn tools: flank wear effects. J. Manuf. Sci. Eng. 118, 359–366 (1996)

    Article  Google Scholar 

  2. Gabaldo S., Diniz A.E., Andrade C.L.F., Guesser W.L.: Performance of carbide and ceramic tools in the milling of compact graphite iron—CGI. J. Br. Soc. Mech. Sci. Eng. 32(5), 511–517 (2010)

    Article  Google Scholar 

  3. Agarwal S.C., Ocken H.: The microstructure and galling wear of a laser-melted cobalt-base hardfacing alloy. Wear 140, 223–233 (1990)

    Article  Google Scholar 

  4. Aykut S., Demetgul M., Tansel I.N.: Selection of optimum cutting condition of cobalt based alloy with GONN. J. Adv. Manuf. 46, 957–967 (2010)

    Article  Google Scholar 

  5. Crook, P.: Properties and selection: non-ferrous alloys and special-purpose materials. Metals Handbook vol 2, 10 edn. ASM International (1993)

  6. Kuzucu V., Ceylan M., Celik H., Celik H.: Microstructure and phase analyses of Stellite plus 6 wt.% Mo alloy. J. Mater. Process. Technol. 69, 257–263 (1997)

    Article  Google Scholar 

  7. Ozturk S.: Slip-Line modeling of machining and determine the influence of rake angle on the cutting force. Trans. Can. Soc. Mech. Eng 36, 23–35 (2012b)

    MathSciNet  Google Scholar 

  8. Ozturk S., Altan E.: Slip-line metal cutting model with negative rake angle. J. Braz. Soc. Mech. Sci. 34, 246–252 (2012a)

    Article  Google Scholar 

  9. Ozturk S., Altan E.: A slip-line approach to the machining with rounded-edge tool. Int. J. Adv. Manuf. Technol. 36, 513–522 (2012)

    Article  Google Scholar 

  10. Grzesik W.: A revised model for predicting surface roughness in turning. Wear 194, 143–148 (1996)

    Article  Google Scholar 

  11. Lin S.C., Chang M.F.: A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning. Int. J. Mach. Tool Manuf. 38, 763–782 (1998)

    Article  Google Scholar 

  12. Chen C.-C.A., Liu W.-C., Duffie N.A.: A surface topography model for automated surface finishing. Int. J. Mach. Tool Manuf. 38, 543–550 (1998)

    Article  Google Scholar 

  13. Ghani A.K., Choudhury I.A.: Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool. J. Mater. Process. Technol. 127, 17–22 (2002)

    Article  Google Scholar 

  14. Diniz A.E., Filho J.C.: Influence of the relative positions of tool and workpiece on tool life. tool wear and surface finish in the face milling process. Wear 232, 67–75 (1999)

    Article  Google Scholar 

  15. Abouelatta O.B., Madl J.: Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. J. Mater. Process. Technol. 118, 269–277 (2001)

    Article  Google Scholar 

  16. Benardos P.G., Vosniakos G.C.: Predicting surface roughness in machining: a review. Int. J. Mach. Tool. Manuf. 43, 833–844 (2003)

    Article  Google Scholar 

  17. Oktem H., Erzurumlu T., Erzincanli F.: Prediction of minimum surface roughness in end milling mold parts usingneural network and genetic algorithm. Mater. Des. 27, 735–744 (2006)

    Article  Google Scholar 

  18. Chang C.K., Lu H.S.: Study on the prediction model of surface roughness for side milling operations. Int. J. Adv. Manuf. Technol. 29, 867–878 (2006)

    Article  Google Scholar 

  19. Brandt G., Gerendas A., Mikus M.: Wear mechanisms of ceramic cutting tools when machining ferrous and non-ferrous allays. J. Eur. Ceram. Soc. 6(5), 273–290 (1990)

    Article  Google Scholar 

  20. North B.: Ceramic cutting tools. SME Technical Paper MR86-451, SME, Deaborn (1986)

    Google Scholar 

  21. Rivero A., Aramendi G., Herranz S., Lópezde Lacalle L.N.: An experimental investigation of the effect of coatings and cutting parameters on the dry drilling performance of aluminium alloys. Int. J. Adv. Manuf. Technol. 28(1–2), 1–11 (2006)

    Article  Google Scholar 

  22. : Predicting surface roughness of hardened AISI 1040 based on cutting parameters using neural networks and multiple regression. Int. J. Adv. Manuf. Technol. 63, 249–257 (2012)

    Article  Google Scholar 

  23. Lela B., Bajić D., Jozić S.: Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling. Int. J. Adv. Manuf. Technol. 42, 1082–1088 (2008)

    Article  Google Scholar 

  24. Kohli A., Dixit U.S.: A neural-network-based methodology for the prediction of surface roughness in a turning process. Int. J. Adv. Manuf. Technol. 25, 118–129 (2004)

    Article  Google Scholar 

  25. Lu C., Ma N., Chen Z., Costes J.-P.: Pre-evaluation on surface profile in turning process based on cutting parameters. Int. J. Adv. Manuf. Technol. 49, 447–458 (2010)

    Article  Google Scholar 

  26. Fernández-Abia A.I., Barreiro J., Lópezde Lacalle L.N., Martínez S.: Effect of very high cutting speeds on shearing, cutting forces and roughness in dry turning of austenitic stainless steels. Int. J. Adv. Manuf. Technol. 57, 61–71 (2011)

    Article  Google Scholar 

  27. Pinar A.M.: Optimization of Process Parameters with Minimum Surface Roughness in the Pocket Machining of AA5083 Aluminum Alloy via Taguchi Method. Arab. J. Sci. Eng. 38, 705–714 (2013)

    Article  Google Scholar 

  28. Thakur, A.G.; Nandedkar, V. M.: Optimization of the resistance spot welding process of galvanized steel sheet using the Taguchi method. Arab. J. Sci. Eng. (2013). doi:10.1007/s13369-013-0634-x

  29. Garg S.K., Manna A., Jain A.: An experimental investigation for optimization of WEDM parameters during machining of fabricated Al/ZrO2 (p)-MMC. Arab. J. Sci. Eng. 38, 3471–3483 (2013)

    Article  Google Scholar 

  30. Çakıroğlu R., Acır A.: Optimization of cutting parameters on drill bit temperature in drilling by Taguchi method. Measurement 46(9), 3525–3531 (2013)

    Article  Google Scholar 

  31. Mannaa, A.; Bhattacharya, B.: A study on machinability of Al/SiC-MMC. J. Mater. Process. Technol. 140, 711–716 (2003)

  32. Palanikumar K., Karthikeyan R.: Assessment of factors influencing surface roughness on the machining of Al/SiC particulate composites. Mater. Des. 28, 1584–1591 (2007)

    Article  Google Scholar 

  33. Zhang J.Z., Chen J.C., Kirby E.D.: Surface roughness optimization in an end-milling operation using the Taguchi design method. J. Mater. Process. Technol. 184, 233–239 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabri Ozturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, S. Machinability of Stellite-6 Coatings with Ceramic Inserts and Tungsten Carbide Tools. Arab J Sci Eng 39, 7375–7383 (2014). https://doi.org/10.1007/s13369-014-1343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1343-9

Keywords

Navigation