Skip to main content

Advertisement

Log in

Optimal Location and Sizing of Multiple Static VAr Compensators for Voltage Risk Assessment Using Hybrid PSO-GSA Algorithm

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A new modified severity index is proposed, which when accounted with the probability of the occurrence of contingency, quantifies the risk that numerically describes how close the system is to voltage instability. Voltage instability is mainly due to insufficient reactive power support. FACTS devices are utilized to improve the voltage profile of the system during line outages. The static VAr compensator (SVC) is considered here, as the compensating device. This paper investigates the outage of all 820 possible combinations of N−2 line contingencies in the IEEE 30-bus system, and the most critical contingencies are ranked based on the voltage severity index and voltage risk index. A practical Indian utility 62-bus system is also investigated for all the possible 4,005 contingency states, which are then ranked. A hybrid combination of two heuristic algorithms, particle swarm optimization and gravitational search algorithm are used, which cartels the exploiting and exploring features of the two algorithms respectively, to achieve the objective of determining the optimal location and optimal size of the SVC and to minimize thereby the voltage deviation from the nominal value. This aids the system operator in deciding the effective control action, based on the real time severity index. The test results are compared with both the existing and proposed severity indices using the conventional PSO algorithm, and the proposed hybrid PSO-GSA algorithm. The computational time of the work substantiates the feasibility of the proposed method for real time online severity assessment and enhancement of the system’s security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, G.K.; Mouson, B.; Kundur, P.: Towards the Development of a Systematic approach for voltage stability assessment of large scale power systems. IEEE Trans. Power Syst. 11(3), 1314 −1324 (1996). doi:10.1109/59.535672

  2. Zhang, Y.; Rajagopalan, S.; Conto, J.: Practical voltage stability analysis. In: Power and Energy Society General Meeting, pp. 1–7. IEEE Press, New York (2010). doi:10.1109/PES.2010.5589892

  3. Taylor, C.W.: Power system voltage stability. Mc Graw Hill, New York (1994)

  4. Haque M.H.: On-line Monitoring of maximum permissible loading of a power system within voltage stability limits. IEEE Procedure Gener. Trans. Distrib. 150(1), 107–112 (2003). doi:10.1049/ip-gtd:20020682

    Article  MathSciNet  Google Scholar 

  5. Rosehart W.D., Canizares C.A., Quintana V.H.: Effect of detailed power system models in traditional and voltage stability constrained optimal power flow problems. IEEE Trans. Power Syst. 18(1), 27–35 (2003). doi:10.1109/TPWRS.2002.807050

    Article  Google Scholar 

  6. Ni M., McCalley J., Vittal V., Tayyib T.: On-line risk based security assessment. IEEE Trans. Power Syst. 18(1), 258–265 (2003)

    Google Scholar 

  7. Berizzi, A.; Bovo, C.; Maranino, P.; Innorta, M.: Multi-objective optimization technique applied to modern power systems. In: Proceedings of IEEE/Power Engineering Society, vol. 3, pp. 1503–1508 Winter Meeting, Columbus (2001)doi:10.1109/PESW.2001.917333

  8. Kirschen D.S., Jayaweera D.: Comparison of risk-based probabilistic and deterministic security assessments. IET Gener. Trans. Distrib. 1(4), 527–533 (2007). doi:10.1049/iet-gtd:20060368

    Article  Google Scholar 

  9. Dai, Y.; McCalley, J.D.; Abi-Samra, N.: Annual risk assessment for overload security. IEEE Trans. Power Syst. 16(4), 616–623 (2001). doi:10.1109/59.962405

  10. Ni, M.; McCalley, J.D.; Vittal, V.; Tayyib, T.: Software implementation of online risk-based security assessment. IEEE Trans. Power Syst. 18(3), 1165–1172 (2003). doi:10.1109/TPWRS.2003.814909

  11. Vaiman, M.; Bell, K.; Chen, Y.; Choudhury, B.; Dobson, I.; Hines, P.; Papic, M.; Miller, S.; Hang, P.; Risk assessment of cascading outages: methodologies and challenges. IEEE Trans. Power Syst. 27(2), 631–641 (2012). doi:10.1109/TPWRS.2011.2177868

  12. Kundur, P.: Power system stability and control. McGraw Hill, New York (1994)

  13. Acha E., Ambriz-Perez H.: FACTS-modelling and simulation in power network. Wiley, New York (2000)

    Google Scholar 

  14. Abido, M.A.: Power system stability enhancement using FACTS controllers: a review. Arab. J. Sci. Eng. 34, 153–172 (2009)

  15. Wibowo, R.S.; Yorino, N.; Eghbal, M.: FACTS devices with control coordination considering congestion relief and voltage stability. IEEE Trans. Power Syst. 26(4), 2302–2310 (2011). doi:10.1109/TPWRS.2011.2106806

  16. Ambriz-Perez H., Acha E., Fuerte C.R.: Advanced SVC models for newton-raphson loadflow and newton optimal power flow studies. IEEE Trans. Power Syst. 15(1), 129–136 (2000). doi:10.1109/59.852111

    Article  Google Scholar 

  17. R. MinguezF. MilanoAntonio, J.: Optimal network placement of SVC devices. IEEE Trans. Power Syst. 22(4), 1851–1860 (2007). doi:10.1109/TPWRS.2007.907543

  18. EiSadek M.Z., Dessouky M.M., Mahmoud G.A., Rashed W.I.: Enhancement of steady state voltage stability by static VAR compensator. Electr. Power Syst. Res. 43(3), 179–185 (1997). doi:10.1016/S0378-7796(97)01179-6

    Article  Google Scholar 

  19. Kazemi A., Badrzadeh B.: Modelling and simulation of SVC and TCSC to study their limits on maximum loadability point. Int. J. Electr. Power Energy Syst. 26, 619–626 (2004). doi:10.1016/j.ijepes.2004.04.008

    Article  Google Scholar 

  20. Singh S.N., David A.K.: A new approach for placement of FACTS devices in open power markets. IEEE Power Eng. Rev. 21, 58–60 (2001). doi:10.1109/MPER.2001.4311616

    Article  Google Scholar 

  21. Acharya, N.; Mithulananthan, N.: Locating Series FACTS Devices in Deregulated Electricity Markets. Electr. Power Syst. Manag. 352–360 (2007) doi:10.1016/j.epsr.2006.03.016

  22. Prakash, K.; Sydulu, M.: A novel approach for optimal location and sizing of capacitors on radial distribution systems using loss sensitivity factors and α-coefficients. IEEE PES Power Systems Conference and Exposition, pp. 1910–1913 Atlanta (2006) doi:10.1109/PSCE.2006.296205

  23. Gerbex S., Cherkaoui R., Germond A.J.: Optimal location of multi-type FACTS devices in a power system by means of genetic algorithm. IEEE Trans. Power Syst. 16, 537–544 (2001). doi:10.1109/59.932292

    Article  Google Scholar 

  24. Mustafa M., Wong Y.C.: Optimal placement of static VAR compensator using genetic algorithm. Elektrika 10(1), 26–31 (2008)

    Google Scholar 

  25. Singh S.P., Rao A.R.: Optimal allocation of capacitors in distribution systems using particle swarm optimization. Int. J. Electr. Power Energy Syst. 43(1), 1267–1275 (2012). doi:10.1016/j.ijepes.2012.06.059

    Article  Google Scholar 

  26. Khadeni, F.; Soleymani, S.; Mozafari, B.: Optimal placement of SVC to improve voltage profile using hybrid genetic algorithm and sequential quadratic programming. In: 16th Conference on Electrical Power Distribution Networks (EPDC), vol. 1, pp. 19–20 (2011)

  27. Benabid R., Boudour M., Abido M.A.: Optimal location and setting of SVC and TCSC devices using non-dominated sorting PSO. Electr. Power Syst. Res. 79(12), 1668–1677 (2009). doi:10.1016/j.epsr.2009.07.004

    Article  Google Scholar 

  28. Mori, H.; Goto, Y.: A parallel tabu search based method for determining optimal location of FACTS devices in power systems. In: IEEE Proceedings of Powercon. International conference on Power System Technology Vol. 2, pp. 1077–1082 (2000). doi:10.1109/ICPST.2000.897170

  29. Bhasaputra, P.; Ongsakul W.: Optimal placement of multi-type FACTS devices by hybrid TS/SA approach. IEEE Proc ISCAS Vol. 3, pp. 375–378 (2003). doi:10.1109/ISCAS.2003.1205034

  30. Chang C.S., Huang J.S.: Optimal SVC placement for voltage stability reinforcements. Electr. Power Syst. Res. 42, 165–172 (1997). doi:10.1016/S0378-7796(96)01201-1

    Article  Google Scholar 

  31. Kheirizad I., Mohammadi A., Varaham M.H.: A novel algorithm for optimal location of FACTS devices in power system planning. J. Electr. Eng. Technol. 3(2), 177–183 (2008)

    Article  Google Scholar 

  32. Rashedi E., Nezamabadi S., Saryazdi S.: GSA: a gravitational search algorithm. Inform. Sci. 179(13), 2232–2248 (2009). doi:10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  33. Eiben A.E., Schippers C.A.: On evolutionary exploration and exploitation. Fundam. Inform. 35(1–4), 35–50 (1998)

    MATH  Google Scholar 

  34. Talbi E.G.: A taxonomy of hybrid metaheuristic. J. Heuristics 8(5), 541–546 (2002)

    Article  Google Scholar 

  35. Mirjalili, S.; Hashim, S.Z.M.: A new hybrid PSO-GSA algorithm for function optimization. In: International Conference on Computer and Information Application (ICCIA), pp. 374–377 (2010). doi:10.1109/ICCIA.2010.6141614

  36. Silas Stephen, D.; Somasundaram, P.: Fuzzy based stochastic algorithms for multi-objective reactive power optimization including FACTS devices. Int. J.Electr. Eng. Inform. 4(2), 245–260 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Mangaiyarkarasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangaiyarkarasi, S.P., Sree Renga Raja, T. Optimal Location and Sizing of Multiple Static VAr Compensators for Voltage Risk Assessment Using Hybrid PSO-GSA Algorithm. Arab J Sci Eng 39, 7967–7980 (2014). https://doi.org/10.1007/s13369-014-1339-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1339-5

Keywords

Navigation