Skip to main content
Log in

Evaluation of Temperature and Mixing Process of Water in Deep and Shallow Aquifers in the Southwestern Tunisia: Case of Djerid Region

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study addresses the hydrogeochemistry of thermal and cold waters circulating in the mineralised area of the Djerid basin (South-western of Tunisia) that aimed basically at understanding the mixing processes influencing their chemical compositions. Temperature intervals are 38–75 and 24.5–26.8 °C for thermal water and cold water, respectively. Two distinct hydrogeological systems supply water either for irrigation or for drinking; they are: (1) the Continental Intercalaire geothermal aquifer (CI), and (2) the Complex Terminal aquifer (CT). Geological, geophysical, hydrogeological, hydrochemical methods are applied to reliably analyze and understand the operating model of the aquifer systems, to determine the hydrogeological, the geochemical behaviours, and the possible inter-aquifers water transfer in south western of Tunisia. The reservoir temperature is estimated to be between 60 and 104 °C according to calculations using silica geothermometers and computation of saturation indexes for different solid phases. Based on chemical and thermal data, it is hypothesized that: (1) mixing rate, which occurs between the ascending deep geothermal water and shallow cold water, is estimated from the enthalpy and chloride methods to be about 65 and 73 % respectively, (2) Mixing models can explain the temperature of the geothermal fluid component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Truesdell, A.H.: Summary of section III-geochemical techniques in geothermal exploration. In: Proceedings, Second U.N. Symposium on the Development and Use of Geothermal Resources, San Francisco, vol. 1, pp. 1iii–1xiii (1975)

  2. Fournier, R.O.; Truesdell, A.H.: Geochemical indicators of subsurface temperature-part 2, estimation of temperature and fraction of hot water mixed with cold water. J. Res. U.S. Geol. Surv. 2, 263–270 (1974)

    Google Scholar 

  3. Arnorsson, S.: Chemical equilibria in Icelandic geothermal systems-implications for chemical geothermometry in investigations. Geothermics 12, 119–128 (1983)

    Article  Google Scholar 

  4. Reed, M.; Spycher, N.: Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochim. Cosmochim. Acta 48, 1479–1492 (1984)

    Article  Google Scholar 

  5. Mahon, W.A.J.: Chemistry in the exploration and exploitation of hydrothermal systems. In: Proceedings United Nations Symposium on the Development-and Utilization of Geothermal Energy: Pisa, vol. 2, Part 2, Geothermics, Spec. Issue 2, pp. 1310–1322 (1970)

  6. Tonani, F.: Geochemical methods of exploration for geothermal energy. In: Proceedings U.N. Symposium on the Development and Utilization of Geothermal Resources, Pisa, 1970, vol. 2, Part 1. Geothermics, Spec. Issue 2, pp. 492–515 (1970)

  7. White, D.E.: Geochemistry applied to the discovery, evaluation and exploitation of geothermal energy resource. In: Proceedings United Nations Symposium on the Development and Utilization of Geothermal Energy: Pisa, vol. 1, Part 2, Geothermics, Spec. Issue 2, pp. 58–80 (1970)

  8. Fournier, R.O.; Truesdell, A.H.: An empirical Na–K–Ca geo-thermometer for natural waters. Geochim. Cosmochim. Acta 37, 1255–1275 (1973)

    Article  Google Scholar 

  9. Ellis, A.J.; Mahon, W.A.J.: Chemistry and Geothermal Systems. Academic Press, New York (1977)

    Google Scholar 

  10. Fournier, R.O.; Potter, R.W., II.: Magnesium correction to Na–K–Ca geothermometer. Geochim. Cosmochim. Acta 43, 1543–1550 (1979)

    Article  Google Scholar 

  11. Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H.: Isotopic and chemical composition of Parbati valley geothermal discharges, NW-Himalaya, India. Geothermics 12, 199–222 (1983)

    Article  Google Scholar 

  12. Giggenbach, W.F.: Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765 (1988)

    Article  Google Scholar 

  13. Pauwels, H.; Fouillac, C.; Fouillac, A.M.: Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: origin of compounds and water–rock interactions. Geochim. Cosmochim. Acta 51. 2737–2749 (1993)

    Article  Google Scholar 

  14. Tarcan, G.; Gemici, Ü.: Water geochemistry of the Seferihisar geo-thermal area, Izmir, Turkey. J Volcanol. Geotherm. Res. 126, 225–242 (2003)

  15. Ben Dhia, H.: Geothermal energy in Tunisia: potential of the southern province. Geothermics 16, 299–318 (1987)

    Article  Google Scholar 

  16. Ben Brahim, F.; Makni, J.; Bouri, S.; Ben Dhia, H.: Properties of geothermal resources in Kebilli region, Southwestern Tunisia. J. Environ. Earth Sci. (2012). doi:10.1007/s12665-012-1974-7

  17. Ben Brahim, F.: Caractérisation hydrogéologique, hydrochimique et géothermique des systèmes aquifères du Sud ouest Tunisien. Thèse Doctorat en Sciences géologiques. Faculté des Sciences de Sfax- Tunisie (2013)

  18. Zouaghi, T.; Guellala, R.; Lazzez, M.; Bedir, M.; Ben Youssef, M.; Inoubli, M.H.; Zargouni, F.: The Chotts fold belt of Southern Tunisia, North African margin: structural pattern, evolution, and regional geodynamic implications. In: Schattner, U. (Ed.) New Frontiers in Tectonic Research—At the Midst of Plate Convergence. ISBN: 978-953-307-594-5 (2011)

  19. Zargouni, F.; Rabia. M.C.H.; Abbes, C.: Rôle des couloirs de cisaillement de Gafsa et de Negrine-Tozeur dans la structuration du Faisceau Sud-atlasique. C.R. Acad. Sc. Paris. T-301, série II, pp. 831–834 (1985)

  20. Ben Ayed, N.: Evolution tectonique de l’avant-pays de la chaine alpine de Tunisie du début du Mésozoïque à l’Actuel. Annales des Mines et de la Géologie de Tunisie, n°32. Tunisie (1993)

  21. Zouari, H.: Evolution géodynamique de l’Atlas centro-méridional de la Tunisie. Stratigraphie, analyses géométrique, cinématique et tectono-sédimentaire. Thèse Doct. es-Sciences, Univ. Tunis II (1995)

  22. Bouaziz, S.: Etude de la tectonique cassante dans la plate-forme et l’Atlas Sahariens (Tunisie Méridionale): Evolution des paléochamps de contraintes et implications géodynamiques. Thèse de Doctorat, Fac. Sc. De Tunis (1995)

  23. Bédir, M.: Mécanismes géodynamiques des bassins associés aux couloirs de coulissements de la marge atlasique de la Tunisie. Seismo-stratigraphie, seismotectonique et implications pétrolières. Thèse Doct. es Sciences, Univ. Tunis II. Tunisie (1995)

  24. Hlaiem, A.: Halokinesis and structural evolution of the major features in eastern and southern Tunisian Atlas. Tectonophysics 306(1), 79–95 (1999)

    Article  Google Scholar 

  25. Zouaghi, T.; Bédir, M.; Inoubli, M.H.: Structuration profonde des dépôts de l’Albien-Maastrichtien en Tunisie centrale: nouvelle limite de l’archipel de Kasserine et implications géodynamiques. Comptes Rendus Geoscience 337, 685–693 (2005)

  26. Lazzez, M.; Zouaghi, T.; Ben Youssef, M.: Austrian phase on the northern African margin inferred from sequence stratigraphy and sedimentary records in southern Tunisia (Chotts and Djeffara areas). Comptes Rendus Geoscience 340, 543–552 (2008)

  27. Mannai-Tayech, B.; Otera, O.: Un nouveau gisement miocène à ichthyofaune au Sud de la chaine des Chotts (Tunisie méridionale). C.R. Palevol. 4, 405–412 (2005)

  28. Mannai-Tayech, B.: The lithostratigraphy of Miocene series from Tunisia, revisited. J. Afr. Earth Sci. 54, 53–61 (2009)

    Article  Google Scholar 

  29. Swezey, C.: Cenozoic stratigraphy of the sahara, northern Africa. J. Afr. Earth Sci. 53, 89–121 (2009)

    Article  Google Scholar 

  30. Cornet, A.: Introduction à l’hydrogéologie saharienne. Revue de Géographie Physique et Géologie Dynamique, pp. 5–72 (1964)

  31. Castany, G.: Bassin sédimentaire du Sahara septentrional (Algérie-Tunisie). Aquifères du Continental Intercalaire et du Complexe Terminal, Bull. Bur. Rec. Géol. Min. (BRGM), Sér. 2, 3, 127–147 (1982)

  32. Edmunds, W.M.; Guendous, A.H.; Mamou, A.; Moula, A.; Shand, P.; Zouari, K.: Groundwater evolution in the continental intercalary aquifer of Southern Algeria and Tunisia: trace element and isotopic indicators. Appl. Geochem. 18, 805–822 (2003)

  33. Mamou, A.: Caractérisation et évaluation des ressources en eau du Sud tunisien. Thèse de doctorat d’état en sciences naturelles. Univ. Paris-Sud, centre d’Orsay, p. 403 (1990)

  34. Piper, A.M.: A graphic procedure in the geochemical interpretation of water analyses. Trans. Am. Geophys. Union 25, 914–923 (1944)

    Article  Google Scholar 

  35. Nair, R.; Kalariya, T.; Sumitra, C.: Antibacterial activity of some selected Indian medicinal flora. Turk. J. Biol. 29, 41–47 (2005)

    Google Scholar 

  36. Nicholson, K.: Geothermal Fluids; Chemistry and Exploration Techniques. Springer, Berlin (1993)

    Book  Google Scholar 

  37. Rybach, L.; Muffler, L.J.P.: Geothermal Systems: Principles and Case Histories. Wiley, UK, p. 34 (1981)

  38. Kharaka, Y.K.; Mariner, R.H.: Chemical geothermometers and their applications to waters from sedimentary basins. In: Thermal History of Sedimentary Basins, S.C.P.M. Special Volume, pp. 99–117 (1989)

  39. Fournier, R.O.: Chemical geothermometers and mixing models for geothermal systems. Geothermics 5(1/4), 41–50 (1977)

  40. D’Amore, F.; Fancelli, R.; Caboit, R.: Observations on the application of chemical geothermometers to some hydrothermal system in Sardinia. Geothermics 16, 271–282 (1987)

    Article  Google Scholar 

  41. Lopez-Chicano, M. Bouamama M. Vallejeos A. Publido B.A.: Factors which determine the hydrogeochemical behavior of karst springs. A case study from the Betic Cordilleras, Spain. Appl. Geochem. 16, 1179–1192 (2001)

    Google Scholar 

  42. Mark, C.P.: Hydrogeochemistry and geothermometry of thermal groundwaters from the Birdsville Track Ridge, Great Artesian Basin, South Australia. Geothermics 33, 743–774 (2004)

    Article  Google Scholar 

  43. Crerar, A.D.: A method for computing multicomponent chemical equilibria based equilibrium constants. Geochim. Cosmochim. Acta 39, 1375–1384 (1975)

    Article  Google Scholar 

  44. D’Amore, F.; Fancelli, R.; Caboit, R.: Observations on the application of chemical geothermometers to some hydrothermal system in Sardinia. Geothermics 16, 271–282 (1987)

    Article  Google Scholar 

  45. D’Amore, F.; Mejía, J.T.: Chemical and physical reservoir parameters at initial conditions in Berlin geothermal field El Salvador: a first assessment. Geothermics 28, 45–73 (1999)

  46. Tole M.P., Armannsson H., Pang Z., Arnorsson S.: Fluid/mineral equilibrium calculations for geothermal fluids and chemical geothermometry. Geothermics 22, 17–37 (1993)

    Article  Google Scholar 

  47. Pang, Z.; Reed, M.H.: Theoretical chemical geothermometry on geothermal waters: problems and methods. Geochim. Cosmochim. Acta 62, 1083–1091 (1998)

    Article  Google Scholar 

  48. Taran, Y.A.; Rouwet, D.; Inguaggiato, S.; Aiuppa, A.: Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico: implications for monitoring of the volcanic activity. J. Volcanol. Geotherm. Res. 178, 224–236 (2008)

  49. Calmbach, L.: HYDROWIN: computer programme, version 3.0. Institut de Minéralogie BFSH 2, 1015. Uni-Lausanne, Switzerland (1995)

  50. Gupta, H.; Roy, S.: Geothermal Energy: An Alternative Resource for the 21st Century. Elsevier, Amsterdam, p. 279 (2007)

  51. Han, D.M.; Liang, X.; Jin, M.G.; Currell, M.J.; Song, X.F.; Liu, C.M.: Evaluation of groundwater hydrochemical characteristics and mixing behaviour in the Daying and Qicun geothermal systems, Xinzhou Basin (2010)

  52. Truesdell, A.H.; Fournier, R.O.: Procedure of estimating the temperature of a hot-water component in a mixed water by using a plot of silica versus enthalpy. J. Res. U.S. Geol. Surv. 5, 49–52 (1977)

    Google Scholar 

  53. Fournier, R.O.: Application of water geochemistry to geothermal exploration and reservoir engineering. In: Rybach, L.; Muffler L.J.P. (eds.) Geothermal Systems: Principles and Case Histories. Wiley and Sons, New York, pp. 109–143 (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Ben Brahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Brahim, F., Makni, J., Bouri, S. et al. Evaluation of Temperature and Mixing Process of Water in Deep and Shallow Aquifers in the Southwestern Tunisia: Case of Djerid Region. Arab J Sci Eng 39, 5677–5689 (2014). https://doi.org/10.1007/s13369-014-1138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1138-z

Keywords

Navigation