Skip to main content
Log in

Selection of a Bridge Construction Site Using Fuzzy Analytical Hierarchy Process in Geographic Information System

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Selection of bridge construction sites over rivers is one of the most important tasks in construction feasibility studies. In this paper, potential sites for the construction of a river bridge are ranked for suitability using analytical hierarchy process for a river in the northern part of Iran. Fuzzy logic is used to incorporate the uncertainty associated with decision making into the model. Geographic information system is used to facilitate the decision-making process by determining alternative sites and evaluating the selection criteria. A floodplain is determined by the river reach using a hydraulic simulation. This is done to identify the length and height of potential bridges for each site. Two scenarios are analyzed in this paper: the first ranks bridge construction sites regardless of the location of an existing bridge and the second ranks bridge construction sites considering the existing bridge. The result of this analysis shows that the existing bridge is one of the best locations but not the best one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Groenier, J.S.; Gubernick, R.: Choosing the best site for a bridge. J. Transp. Res. pp. 347–354 (2007)

  2. Kuo M.S., Liang G.S., Huang W.C.: Extensions of the multicriteria analysis with pairwise comparison under a fuzzy environment. Int. J. Approx. Reason. 43, 268–285 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Soroudi, A.; Ehsan, M.: Application of a modified NSGA method for multi-objective static distributed generation planning. Arab. J. Sci. Eng. (2011). doi:10.1007/s13369-011-0077-1

  4. Saaty, T.L.: Multicriteria Decision Making—The Analytic Hierarchy Process. RWS Publications, Pittsburgh (1988)

  5. Ko, J.: Solving a distribution facility location problem using an analytic hierarchy process approach-Gwangju-Korea. In: ISAHP Conference, Honolulu, Hawaii (2005)

  6. Yanpirat, P.; Panjarongkha, V.: Decision Support Model for site selection of Wafer Fabrication Plant in Thailand—The MCDM Approach. Bangkok (2005)

  7. Mousavi, S.M.; Tavakkoli-Moghaddam, R.; Heydar, M.; Ebrahimnejad, S.: Multi-criteria decision making for plant location selection: an integrated Delphi–AHP–PROMETHEE methodology. Arab. J. Sci. Eng. (2012). doi:10.1007/s13369-012-0361-8

  8. Mohajeri N., Amin G.R.: Railway station site selection using analytical hierarchy process and data envelopment analysis. J. Comput. Ind. Eng. 59, 107–114 (2010)

    Article  Google Scholar 

  9. Dey P.K., Ramcharan E.K.: Analytic hierarchy process helps select site for limestone quarry expansion in Barbados. J. Environ. Manage. 88, 1384–1395 (2008)

    Article  Google Scholar 

  10. Wang Y.M., Liu J., Elhag T.M.S.: An integrated AHP–DEA methodology for bridge risk assessment. J. Comput. Ind. Eng. 54, 513–525 (2008)

    Article  Google Scholar 

  11. Wang T.C., Chen Y.H.: Applying consistent fuzzy preference relations to partnership selection. Omega Int. J. Manage. Sci. 35, 384–388 (2007)

    Article  Google Scholar 

  12. Deng, H.: Multicriteria analysis with fuzzy pair-wise comparison. Int. J. Approx. Reason. 21, 215–231 (1999)

    Google Scholar 

  13. Laarhoven, Van.: Pedrcyz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy. Set. Syst. 11, 229–241 (1983)

    Google Scholar 

  14. Buckley, J.J.: Fuzzy hierarchy analysis. Fuzzy. Set. Syst. 17, 233–247 (1985)

    Google Scholar 

  15. Tzeng G.H.: Chen, Y.W.: Optimal location of airport fire station: a fuzzy multi-objective programming and revised generic algorithm approach. J. Transp. Plan. Technol. 23, 37–55 (1999)

    Article  Google Scholar 

  16. Chu, T.C.: Selecting plant location via a fuzzy TOPSIS approach. Int. J. Adv. Manuf. Technol. 28, 839–844 (2002)

    Google Scholar 

  17. Kuo R.J., Chi S.C., Kao S.S.: A decision support system for locating convenience store location through integration of fuzzy AHP and artificial neural network. J. Comput. Ind. 47(2), 199–214 (2002)

    Article  Google Scholar 

  18. Kuo R.J., Chi S.C., Kao S.S.: A decision support system for locating convenience store through fuzzy AHP. J. Comput. Ind. Eng. 37, 323–326 (1999)

    Article  Google Scholar 

  19. Ertugrul, I.; Karakasoglu, N.: Comparison of fuzzy AHP and TOPSIS methods for facility location selection. Int. J. Adv. Manuf. Technol. (2007). doi:10.1007/s00170-007-1249-8

  20. Chen, S.J.; Hwang, C.L.; Hwang, F.P.: Fuzzy multiple attributes decision making methods and applications. Springer, Berlin (1992)

  21. Ashrafi, A.R.; Yuseff, R.M.; Derayatifar, A.R.: Linguistic extension of fuzzy integral for group personnel selection problem. Arab. J. Sci. Eng. (2011). doi:10.1007/s13369-012-0491-z

  22. Cheng M.Y., O’Connor J.T.: Site layout of construction temporary facilities using an enhanced-geographic information system (GIS). J. Aut. Construct. 3, 11–19 (1994)

    Article  Google Scholar 

  23. Moeinaddini, M.; Khorasani, N.; Danehkar, A.; Darvishsefat, A.A.; zienalyan, M.: Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study: Karaj). J. Waste. Manage. 30, 912–920 (2010)

    Google Scholar 

  24. Malczewski, J.: GIS and Multicriteria Decision Analysis. Wiley, New York (1999)

  25. Boroushaki S., Malczewski J.: Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. J. Comput. Geosci. 34, 399–410 (2007)

    Article  Google Scholar 

  26. Malczewski, J.: GIS and Multicriteria Decision Analysis. Wiley, New York (2006)

  27. Guiqin W., Guoxue L., Lijun C.: Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China. J. Environ. Manag. 90, 2414–2421 (2009)

    Article  Google Scholar 

  28. Sharifi, M.; Hadidi, M.; Vessali, E.; Mosstafakhani, P.; Taheri, K.; Shahoie, S.; Khodamoradpour, M.: Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran. J. Waste. Manag. 29, 2740–2758 (2009)

    Google Scholar 

  29. Geneletti D.: Combining stakeholder analysis and spatial multicriteria evaluation to select and rank inert landfill sites. J. Waste. Manag. 30, 328–337 (2010)

    Article  Google Scholar 

  30. Kye P.A.K.: On intractable conflicts participatory GIS applications—the search for consensus amidst competing claims and institutional demand. Ann. Assoc. Am. Geogr. 94(1), 37–57 (2004)

    Article  Google Scholar 

  31. Hammad, A.; Itoh, Y.; Nishido, T.: Bridge planning using GIS and expert system approach. J. Comput. Civil. Eng. 7, 42–52 (1993)

    Google Scholar 

  32. GangaRao H., Ward R., Howser V.: Value engineering approach to low-volume road bridge selection. J. Struc. Eng. 114(9), 1962–1977 (1988)

    Article  Google Scholar 

  33. Ostenfeld, K.H.; Andersen, E.Y.: Major bridge projects—a multi-disciplinary approach. Front. Archit. Civ. Eng. China 5(4), 479–495 (2011). doi:10.1007/s11709-011-0137-3

  34. Sasmal S., Ramanjaneyulu K.: Condition evaluation of existing reinforced concrete bridges using fuzzy based analytic hierarchy approach. Exp. Syst. Appl. 35(3), 1430–1443 (2008)

    Article  Google Scholar 

  35. Pan, N.F.: Fuzzy AHP approach for selecting the suitable bridge construction method. J. Aut. Construct. 17, 958–965 (2008)

    Google Scholar 

  36. Zhao, Z.; Chen, C.: A fuzzy system for concrete bridge damage diagnosis. Comput. Struct. 80, 629–641 (2002)

    Google Scholar 

  37. Wang Y.M., Elhag T.M.S.: A fuzzy group decision making approach for bridge risk assessment. J. Comput. Ind. Eng. 53, 137–148 (2007)

    Article  Google Scholar 

  38. USACE (US Army Corps of Engineers), Hydrologic Engineering Centre, HEC-RAS River Analysis System, User’s Manual, Version 4.1, January (2010)

  39. Ministry of Roads and Transportation Road Safety Manual (Road Side Safety) Iran, Manual No. 267-1 (2005)

  40. Aldian A., Taylor M.A.P.: Fuzzy multi-criteria analysis for inter-city travel demand modelling. J. Eastern. Asia. Soc. Transp. Stud. 5, 1294–1307 (2003)

    Google Scholar 

  41. Ross, T.J.: Fuzzy logic with engineering application. McGraw-Hill, New York (1995)

  42. McKay M.D., Conover W.J., Beckman R.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 211, 239–245 (1979)

    MathSciNet  Google Scholar 

  43. Post J., Hattermann F.F., Krysanova V., Suckow F.: Parameter and input data uncertainty estimation for the assessment of long-term soil organic carbon dynamics. Environ. Modell. Softw. 23(2), 125–138 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Behzadian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardeshir, A., Mohseni, N., Behzadian, K. et al. Selection of a Bridge Construction Site Using Fuzzy Analytical Hierarchy Process in Geographic Information System. Arab J Sci Eng 39, 4405–4420 (2014). https://doi.org/10.1007/s13369-014-1070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1070-2

Keywords

Navigation