Skip to main content

Advertisement

Log in

A Fixed Switching Frequency Direct Torque Control Strategy for Induction Motor Drives Using Indirect Matrix Converter

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Direct torque control (DTC) is a very competitive control strategy because of its simple structure and good dynamic performance essentially in terms of torque response. However, there are some drawbacks which need to be eliminated or at least reduced, like the variable switching frequency and torque ripples. Matrix converters are the new generation of power converters which provide a very good quality of input and output waveforms with a controllability of input power factor, a bidirectional power flow and a compact sight structure. In this present paper, we propose a method used for a fixed switching frequency direct torque control (FSF-DTC) using an indirect matrix converter (IMC). This method is characterized by a simple structure, FSF-DTC which causes minimal torque ripple and unity input power factor. Using this strategy, we combine the IMCs advantages with those of DTC schemes. The technique used to obtain the constant frequency, based on a triangular waveform added to the reference of the torque to impose the dynamic of the torque slopes, is combined with the input current space vector to create the switching table for the IMC drives. The input current modulation allows the rectification stage control of the IMC, while the inverter stage is controlled using the classical DTC switching table. Simulation results clearly demonstrate a better dynamic and steady state performances of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Vs :

Stator supply voltage vector (V)

p :

Number of pole pairs

L m :

Mutual inductance (H)

L s, L r :

Stator and rotor self-inductance (H)

σ :

Total leakage factor

\({\phi _{\rm s}}\) :

Stator flux linkage (Wb)

\({{\phi}'_{\rm r}}\) :

Rotor flux linkage expressed in the stationary frame (Wb)

γ :

Displacement angle between stator and rotor flux

T e :

Electromagnetic torque (N m)

T eref :

Electromagnetic reference torque (N m)

ΔT e(max):

Maximal torque variation (N m)

A tr :

Triangular waveform magnitude

f tr :

Triangular waveform frequency (Hz)

B H :

Hysteresis torque band limits

T tr :

Triangular waveform period (μs)

T c :

Switching period (μs)

d γ , d δ :

Duty cycles for active vectors applied to rectifier stage of IMC

\({{d}'_\gamma, {d}'_\delta}\) :

Resized duty cycles for active vectors applied to rectifier stage of IMC

m ij :

Duty cycles applied for each switch S ij of the IMC

v i (t):

Input voltages (V)

v o (t):

Output voltages (V)

i i (t):

Input currents (A)

i o (t):

Output currents (A)

M(t) and M T(t):

Modulation matrix and its transpose

θ in :

Input current reference vector angle into a sector where it lies

References

  1. Venturini, M.G.B.: A new sine wave in sine wave out conversion technique which eliminates reactive elements. In: Proceedings of the Powercon’80 Conference vol. 7, pp. E3-1–E3-15 (1980)

  2. Venturini, M.G.B.; Alesina, A.: The generalized transformer: a new bidirectional sinusoïdal waveform frequency converter with continously adjustable input power factor. In: Proceeding of the PESC Conference Record, pp. 242–252 (1980)

  3. Alesina A., Venturini M.G.B.: Analysis and design of optimum-amplitude nine-switch direct AC–AC converters. IEEE Trans. Power Electron. 4(1), 101–112 (1989)

    Article  Google Scholar 

  4. Huber, L.; Borojevic, D.: Space vector modulator for forced commutated cycloconverter. IEEE Ind. Appl. Soc. Annu. Meet. 1, 871–876 (1989)

    Google Scholar 

  5. Klumpner, C.; Nielsen, P.; Boldea, I.; Blaabjerg, F.: A new matrix converter-motor (MCM) for industry applications. In: Proceeding of the IAS’00, vol. 3, pp. 1394–1402 (2000)

  6. Babaei, E.; Hosseini, S.H.; Gharehpetian, G.B.: Reduction of THD and low order harmonics with symmetrical output current for single-phase ac/ac matrix converters. Int. J. Electr. Power Energy Syst. 32(3), 225–235 (2010)

    Google Scholar 

  7. Nguyen, H.M.; Lee, H.H.; Chun, T.W.: Input power factor compensation algorithms using a new direct-SVM method for matrix converter. IEEE Trans. Ind. Electron. 58(1), 232–243 (2011)

    Google Scholar 

  8. Hojabri, H.; Mokhtari, H.; Chang, L.: A generalized technique of modeling, analysis, and control of a matrix converter using SVD. IEEE Trans. Ind. Electron. 58(3), 949–959 (2011)

    Google Scholar 

  9. Cárdenas, R.; Pena, R.; Wheeler, P.; Clare, J.: Experimental validation of a space-vector-modulation algorithm for four-leg matrix converters. IEEE Trans. Ind. Electron. 58(4), 1282–1293 (2011)

    Google Scholar 

  10. Zhou, P.; Sun, K.; Liu, Z.; Huang, L.; Matsuse K.; Sasagawa, K.: A novel driving and protection circuit for reverse-blocking IGBT used in matrix converter. IEEE Trans. Ind. Appl. 43(1), (2007)

  11. Taïb, N.; Metidji, B.; Rekioua, T.; Francois, B.: Novel low cost self-powered-solution of bidirectional switch gate driver for matrix converters. IEEE Trans. Ind. Electron. 59(1), 211–219 (2012)

    Google Scholar 

  12. Kolar, J.W.; Baumann, M.; Schafmeister, F.: Novel three-phase AC–DC–AC sparse matrix converter. In: Proceeding of the APEC’01, vol. 2, pp. 777–791 (2002)

  13. Klumpner, C.; Wheeler, P.; Blaabjerg, F.: Control of a two stage direct power converter with a single voltage sensor mounted in the intermediary circuit. In: 35th Annual IEEE PESC’04, pp. 2385–2392 (2004)

  14. Minary, Y.; Shinohara, K.; Ueda, R.: PWM-rectifier/voltage-source inverter without DC link components for induction motor drive. In: IEE Proceedings-B, vol. 140, pp. 363–368 (1993)

  15. Iimori, K.; Shinohara, K.; Tarumi, O.; Fu, Z.; Muroya, M.: New current-controlled PWM rectifier-voltage source without DC link components. In: IEEE Proceeding of the 1997 IEEE Power Conversion Conference, PCC’97, Nagaoka, 23 August 1997, vol. 2, pp. 783–786 (1997)

  16. Zwimpfer, P.; Stemmler, H.: Modulation and realization of a novel two-stage matrix converter. In: IEEE Proceeding of the 2001 Brazilian Power Electronics Conference, COBEP 2001, Florianpolis, 11–14 November 2001, vol. 2, pp. 485–490 (2001)

  17. Gupta, R.K.; Mohapatra, K.K.; Somani, A.; Mohan, N.: Direct-matrix-converter-based drive for a three-phase open-end-winding AC machines with advanced features. IEEE Trans. Ind. Electron. 57(12), 4032–4042 (2010)

    Google Scholar 

  18. Cruz, S.M.A.; Ferreira, M.; Mendes, A.M.S.: Analysis and diagnosis of open-circuit faults in matrix converters. IEEE Trans. Ind. Electron. 58(5), 1648–1661 (2011)

    Google Scholar 

  19. Taïb, N.; Rekioua, T.; François, B.: An improvement fixed switching DTC induction machine fed by matrix converter. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 7(3), 198–205 (2010)

    Google Scholar 

  20. Ghedamsi, K.; Aouzellag, D.: Improvement of the performances for wind energy conversions systems. Int. J. Electr. Power Energy Syst. 32(9), 936–945 (2010)

    Google Scholar 

  21. Casadei, D.; Serra, G.; Tani, A.: The use of matrix converters in direct torque control of induction machines. IEEE Trans. Ind. Electron. 48(6), 1057–1064 (2001)

    Google Scholar 

  22. Buja, G.S.; Kazmierkowski, M.P.: Direct torque control of PWM inverter-fed AC motors—a survey. IEEE Trans. Ind. Electron. 51(4), 744–757 (2004)

    Google Scholar 

  23. Idris, N.R.N.; Yatim, A.H.M.: Direct torque control of induction machines with constant switching frequency and reduced torque ripple. IEEE Trans. Ind. Electron. 51(4), 758–767 (2004)

    Google Scholar 

  24. Rekioua, D.; Rekioua, T.: Study of direct torque control strategy with minimization torque ripple for permanent magnets synchronous machines. J. Electr. Eng. 5(1), (2005)

  25. Lee, K.B.; Blaabjerg, F.: A novel unified DTC-SVM for sensorless induction motor drives fed by matrix converter. IEEE, (2005)

  26. Ortega, C.; Arias, A.; Blacells, J.; Asher, G.M.: Improved waveform quality in the direct torque control of matrix-converter-fed PMSM drives. IEEE Trans. Ind. Electron. 57(6), 2101–2110 (2010)

    Google Scholar 

  27. Chen, X.; Kazerani, M.: A new direct torque control strategy for induction machine based on indirect matrix converter. In: IEEE ISIE Proceeding, 9–12 July 2006, Quebec, pp. 2479–2484

  28. Li, Y.; Liu, W.: A novel direct torque control method for induction motor drive system fed by two-stage matrix converter with strong robustness for input voltage. In: Second IEEE Conference on Industrial Electronics and Applications, pp. 698–702 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Taïb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taïb, N., Metidji, B. & Rekioua, T. A Fixed Switching Frequency Direct Torque Control Strategy for Induction Motor Drives Using Indirect Matrix Converter. Arab J Sci Eng 39, 2001–2011 (2014). https://doi.org/10.1007/s13369-013-0731-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0731-x

Keywords

Navigation