Skip to main content
Log in

Enhanced Possibilistic Fuzzy C-Means Algorithm for Normal and Pathological Brain Tissue Segmentation on Magnetic Resonance Brain Image

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A novel approach called enhanced possibilistic fuzzy c-means clustering is proposed for segmenting MRI brain image into different tissue types on both normal and tumor-affected pathological brain images. The proposed method incorporates membership, possibility (typicality) and both local and non-local spatial neighborhood information to classify each pixel by combining the fuzzy c-mean (FCM) and possibilistic c-mean. This incorporation is achieved by modifying the distance metrics. This improves accuracy of the medical image segmentation in both real and noisy images. Application of our method to contrast-enhanced T1-weighted brain images gives segmentation of white matter, gray matter and cerebrospinal fluid of brain image. The average value of similarity metrics of the result obtained from our method is 96 %. This value that is higher than the other methods shows that our proposed method segments the MRI brain image effectively. Experimental results with synthetic and real images show that the proposed algorithm is more accurate and robust than other FCM clustering algorithm extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bushberg, J.T.; Seibert, J.A.; Leidholdt, E.M.; Boone, J.M.: The Essential Physics of Medical Imaging, 2nd Edn. Lippincott Williams & Wilkins, Baltimore (2001)

  2. Gonzalez, R.C.; Woods, R.E.: Digital Image Processing, 2nd Edn., Prentice Hall, New Jersey (2002)

  3. Shapiro L.G., Stockman G.C.: Computer Vision. Prentice Hall, New Jersey (2001)

    Google Scholar 

  4. Pham, D.L.; Xu, C.Y.; Prince, J.L.: A survey of current methods in medical image segmentation. Ann. Rev. Biomed. Eng. 2, 315–337 (2000) [Technical report version, JHU/ECE 99-01, Johns Hopkins University]

  5. Suzuki H., Toriwaki J.: Automatic segmentation of head MRI images by knowledge guided thresholding. Comput. Med. Imaging Graphics 15(4), 233–240 (1991)

    Article  Google Scholar 

  6. Haralick, R.M.; Shapiro, L.G.: Image segmentation technique. Comput. Vis. Graph. Image Process. 29, 100–132 (1985)

    Google Scholar 

  7. Manousakas, I.N.; Undrill, P.E.; Cameron, G.G.; Redpath, T.W.: Split-and-merge segmentation of magnetic resonance medical images: performance evaluation and extension to three dimensions. Comput. Biomed. Res. 31, 393–412 (1998)

    Google Scholar 

  8. Bezdek, J.C.; Hall, L.O.; Clarke, L.P.: Review of MR image segmentation using pattern recognition. Med. Phys. 20(4), 1033–1048 (1993)

    Google Scholar 

  9. Coleman, G.B.; Andrews, H.C.: Image segmentation by clustering. Proc IEEE V67(50), 773–785 (1979)

    Google Scholar 

  10. Dunn, J.C.: A fuzzy felative of the isodata process and its use in detecting compact well-separated clusters. J. Cybernet. 3, 32–57 (1973)

    Google Scholar 

  11. Lei, T.; Sewchand, W.: Statistical approach to X-Ray CT imaging and its applications in image analysis—part II: a new stochastic model-based image segmentation technique for X-Ray CT image. IEEE Trans. Med. Imaging 11(1), 62–69 (1992)

    Google Scholar 

  12. Jain, A.K.; Dubes, R.C.: Algorithm for Clustering Data. Prentice Hall, New Jersey (1988)

  13. Zadeh L.A.: Fuzzy sets. Inf. Control. 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li S.Z.: Markov Random Field Modeling in Computer Vision. Springer, Berlin (1995)

    Book  Google Scholar 

  15. Geman, S.; Geman, D.: Stochastic relaxation, Gibbs distrutions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6, 721–741 (1984)

    Google Scholar 

  16. Liu, K.C.-R.; Yang, M.-S.; Liu, H.-C.; Lirng, J.-F.; Wang, P.-N.: Generalized Kohonen’s competitive learning algorithm for ophthalmological MR image segmentation. Magn. Resonance Imaging. 21, 863–870 (2003)

    Google Scholar 

  17. Ozkan, M.; Dawant, B.M.; Maciunas, R.J.: Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study. IEEE Trans. Med. Imaging. 12, 534–544 (1993)

    Google Scholar 

  18. Liew A.W.-C., Yan H.: Current methods in the automatic tissue segmentation of 3D magnetic resonance brain images. Curr. Med. Imaging Rev. 2(1), 91–103 (2006)

    Article  Google Scholar 

  19. McInerney, T.; Terzopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal. 1(2), 91–108 (1996)

    Google Scholar 

  20. Ji, L.; Yan, H.: An attractable snakes based on the greedy algorithm for contour extraction. Pattern Recogn. 35(4), 791–806 (2002)

    Google Scholar 

  21. Thompson, P.; Toga, A.W.: Detection, visualization and animation of abnormal anatomic structure with a probabilistic brain atlas based on random vector field transformations. Med. Image Anal. 1, 271–294 (1997)

    Google Scholar 

  22. Dawant, B.M.; Hartmann, S.L.; Thirion, J.P.; Maes, F.; Vandermeulen, D.; Demaerel, P: Automatic 3D segmentation of internal structures of the head in MR images using a combination of similarity and freeform transformations. I. Methodology and validation on normal subjects. IEEE Trans. Med. Imaging. 18(7), 909–16 (1999)

    Google Scholar 

  23. Liu, K.C.-R.; Yang, M.-S.; Liu, H.-C.; Lirng, J.-F.; Wang, P.-N.: Generalized Kohonen’s competitive learning algorithm for ophthalmological MR image segmentation. Magn. Resonance Imaging. 21, 863–870 (2003)

    Google Scholar 

  24. Hou Z., Qian W., Huang S., Hu Q., Nowinski W.L.: Regularized fuzzy cmeans method for brain tissue clustering. Pattern Recogn. Lett. 28, 1788–1794 (2007)

    Article  Google Scholar 

  25. Bezdek, J.C.; Hall, L.O.; Clark, M.C.; Goldgof, D.B.; Clarke, L.P.: Medical image analysis with fuzzy models. Stat. Methods Med. Res. 6, 191–214 (1997)

    Google Scholar 

  26. Krishnapuram, R.; Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Google Scholar 

  27. Pal, N.R.; Pal, K.; Bezdek, J.C.: A mixed c-means clustering model. IEEE Int Conf Fuzzy Syst. 1, 11–21 (1997)

    Google Scholar 

  28. Pal N.R., Pal K., Keller J.M., Bezdek J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  MathSciNet  Google Scholar 

  29. Krishnapuram, R.; Keller, J.M.: The possibilistic c-means algorithm: insights and recommendations. IEEE Trans. Fuzzy Syst. 4, 385–393 (1996)

    Google Scholar 

  30. Ahmed, M.N.; Yamany, S.M.; Mohamed, N.; Farag, A.A.; Moriarty, T.: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging. 21(3), 193–199 (2002)

    Google Scholar 

  31. Ma, L.; Staunton, R.C.: A modified fuzzy c-means image segmentation algorithm for use with uneven illumination patterns. Pattern Recogn. 40(8), 3005–3011 (2007)

    Google Scholar 

  32. Shen, S.; Sandham, W.; Granat, M.; Sterr, A.: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. Inf. Technol. Biomed. 9(3), 459–467 (2005)

    Google Scholar 

  33. Buades, A.; Coll, B.; Morel, J.-M.: A non-local algorithm for image denoising. CVPR. 2, 60–65 (2005)

    Google Scholar 

  34. Buades, A.; Coll, B.; Morel J.-M. On image denoising methods. Technical Report 2004-15, CMLA (2004)

  35. Zijdenbos, A.P.; Dawant, B.M.; Margolin, R.A.; Palmer, A.C.: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans. Med. Imaging. 13(4), 716–724 (1994)

    Google Scholar 

  36. Bezdek J.C.: Cluster validity with fuzzy sets. J. Cybernet. 3, 58–73 (1974)

    MathSciNet  Google Scholar 

  37. Bezdek, J.C.: Mathematical models for systematic and taxonomy. In: Proceedings of Eighth International Conference on Numerical Taxonomy, pp. 143–166 (1975)

  38. Wang, X.Z.; Wang, Y.D.; Wang, L.J.: Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recogn. Lett. 25;, 1123–1132 (2004)

    Google Scholar 

  39. Chuang, K.S.; Tzeng, H.L.; Chen, S.; Wu, J.; Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)

    Google Scholar 

  40. Xie X.L., Beni G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(5), 841–847 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran, A., Dhanasekaran, R. Enhanced Possibilistic Fuzzy C-Means Algorithm for Normal and Pathological Brain Tissue Segmentation on Magnetic Resonance Brain Image. Arab J Sci Eng 38, 2375–2388 (2013). https://doi.org/10.1007/s13369-013-0559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0559-4

Keywords

Navigation