Skip to main content
Log in

QTCP: Improving Throughput Performance Evaluation with High-Speed Networks

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

High-speed TCP (HSTCP) is one of the several popular variants of TCP aimed at the optimization of TCP for high-speed networks. Like all other variants, HSTCP also fails to take full shared bandwidth utilization and offers low throughput rate, high packet loss rate and poor fairness. To overcome these problems, a new adaptive congestion control algorithm with high-speed delay product network named, the Quick Transport Control Protocol (QTCP) has been designed through this research. The basic idea of QTCP has been inspired by the HSTCP and CUBIC, which supported to enhance the algorithm. Three main component of QTCP window control algorithm are α phase, β phase and multiplicative decrease. An experimental setup was designed for the evaluation of QTCP. In this experiment, the QTCP was evaluated based on average throughput and fairness between multiple flows with the same RTT. QTCP performs tuning of the sender side modification based on slow start and AIMD algorithms of HSTCP and CUBIC. QTCP provides higher throughput and enhanced fairness as compared to most of the currently available TCP variants for high-speed networks. The improved throughput and fairness remains intact even in the presence of background traffic. NS-2 simulator-based results with different configurations are presented, discussed in detail, and evaluated with other popular algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qureshi B., Othman M., Hamid N.A.W.: Progress in various TCP variants: issues, enhancement and solution. Mausam J. Comput. 1(4), 493–500 (2009)

    Google Scholar 

  2. Floyd S., Fall K.: Promoting the use of end-to-end congestion control, in the Internet. IEEE/ACM Trans. Netw. 7(4), 458–472 (1999)

    Article  Google Scholar 

  3. Xue-zeng P., Fan-jun S., Yong L., Ling-di P.: CW-HSTCP: fair TCP in high-speed networks. J. Zhejiang Univ. Sci. 7(2), 172–178 (2006)

    Article  Google Scholar 

  4. Fan-jun S.; Xue-zeng P.; Jie-bing W.; Zhengi W.: An algorithm for reducing loss rate of high-speed TCP. J. Zhejiang Univ. Sci. 7(supp.II, 245–251), 7–suppII, 245251 (2006)

  5. Floyd, S.; Ratnasamy, S.; Shenker, S.: Modifying TCP’s congestion control for high speeds. Technical note available at: http://www.icir.org/floyd/papers/hstcp.pdf, pp. 1–5 (2002)

  6. Zhang Y., Lemin L., Wang S.: Improving Reno and New-Reno’s performances over OBS networks without SACK. Int. J. Electron. Commun. 63(4), 294–303 (2009)

    Article  Google Scholar 

  7. Floyd, S.; Henderson, T.; Gurtov, A.: The NewReno modification to TCP’s fast recovery algorithm (2004). Available at http://www.faqs.org/rfcs/rfc3782.html

  8. Kelly T.: Scalable TCP: improving performance in high-speed wide area networks. ACM SIGCOMM Comput. Commun. Rev. 33(2), 83–91 (2003)

    Article  Google Scholar 

  9. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control for fast, long distance networks. In: Proceeding of NETWORKING’06, pp. 476–487 (2006)

  10. Rhee, I.; Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. In: Proceeding of PFLDnet (2005)

  11. Shorten, R.; Leith, D.: H-TCP: TCP for high-speed and long-distance networks. In: Proceeding of Second International Workshop on Protocols for Fast-long Distance Networks (2004)

  12. Wei D.X., Jin C., Low S.H., Hegde S.: FAST TCP:motivation,architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14(6), 1246–1259 (2006)

    Article  Google Scholar 

  13. Tan, K.; Song, J.; Zhang, Q.; Sridharan, M.: A compound tcp approach for high-speed and long distance networks. In: INFOCOM Proceeding 25th IEEE International Conference on Computer Communications (2006)

  14. Liu S., Basar T., Srikant R.: TCP-Illionois: a loss- and delay-based congestion control algorithms for high-speed networks. Perform. Eval. 65, 417–440 (2008)

    Article  Google Scholar 

  15. Brakmo L.S., Peterson L.L.: TCP Vegas: end to end congestion avoidance on a Global internet. IEEE J. Select. Areas. Commun. 13(8), 1465–1480 (1995)

    Article  Google Scholar 

  16. Parsa, C.; Garcia-Luna-Aceves, J.J.: Improving TCP congestion control over internets with heteroge-neous transmission media. In: Proceedings of International Conference on Network Protocols (1999)

  17. Fuand C.P., CLiew S.: remedy for performance degradation of TCP Vegas in asymmetric networks. IEEE Commun. Lett. 7(1), 42–44 (2003)

    Article  Google Scholar 

  18. Kuzmanovic, A.; Knightly, E.W.: TCP-LP: a distributed algorithm for low priority data transfer. In: Proceedings of IEEE INFOCOM (2003)

  19. Chan Y.C., Chan C.T., Chen Y.C.: Design and performance evaluation of an improved TCP con-gestion avoidance scheme. In: IEEE Proc. Commun. 151(1), 107–111 (2004)

    Article  Google Scholar 

  20. Fournier A., Reeves W.T.: A simple model of ocean waves. Proc. ACM/SIGGRAPH Comput. Graph. 20(4), 75–84 (1986)

    Article  Google Scholar 

  21. Fall K., Floyd S.: Simulation-based comparisons of Tahoe Reno and SACK TCP. Comput. Commun. Rev. 26(3), 5–21 (1996)

    Article  Google Scholar 

  22. Mathis M., Semke J., Mahdavi J., Ott T.: The macroscopic behavior of the TCP congestion avoid-ance algorithm. Commun. Rev. 27(3), 67–82 (1997)

    Article  Google Scholar 

  23. Morris, R.: Scalable TCP Congestion Control, PhD thesis, Harvard University, Cambridge, MA (1999)

  24. NS-2 The Network Simulator, [online] Available: http://www.isi.edu/nsnam/ns/

  25. Khademi, N.; Othman, M.: Size-Based and Direction-Based TCP Fairness Issues in IEEE 802.11 WLANs. EURASIP J. Wirel. Commun. Netw. 2010, 16 (2010). doi:10.1155/2010/818190

  26. Jaffe J.: Bottleneck flow control. IEEE Trans. Commun. 29(7), 954–962 (1981)

    Article  MathSciNet  Google Scholar 

  27. Kelly F., Maulloo A., Tan D.: Rate control in communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

    MATH  Google Scholar 

  28. Kunniyur S., Srikant R.: End-to-end congestion control schemes: utility functions, random losses and ECN marks. IEEE/ACM Trans. Netw. 11(5), 689–702 (2003)

    Article  Google Scholar 

  29. Chiu D., Jain R.: Analysis of the increase/decrease algorithm for congestion avoidance in computer networks. Comput. Netw. ISDN 17(1), 1–14 (1989)

    Article  MATH  Google Scholar 

  30. Bullot H., Cottrell R.L., Hughes-Jones R.: Evaluation of advanced TCP stacks on fast long-distance production networks. J. Grid Comput. 1(4), 345–359 (2003)

    Article  Google Scholar 

  31. Sangtae H., Le L., Rhee I., Xu L.: Impact of background traffic on performance of high-speed TCP variant protocols. Comput. Netw. 51, 1748–1762 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barkatullah Qureshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qureshi, B., Othman, M., Subramaniam, S. et al. QTCP: Improving Throughput Performance Evaluation with High-Speed Networks. Arab J Sci Eng 38, 2663–2691 (2013). https://doi.org/10.1007/s13369-012-0483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0483-z

Keywords

Navigation