Skip to main content
Log in

The Effect of Air Preheating on a Sudden-Expansion Turbulent Diffusion Air-fuel Flame

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An axisymmetric sudden-expansion geometry of a co-flowing methane–air diffusion flame is considered to investigate the effect of air preheating on pollutant formation using \({k-\varepsilon}\) turbulence and β-PDF combustion models. The governing equations are solved by iterative numerical approach using Finite Volume Method and a second-order upwind scheme. NO and CO2 concentration and peak combustor temperature as well as combustor efficiency are studied in this paper. The obtained results show that air preheating increases NO formation and maximum temperature in the combustor. Air preheating improves the combustor efficiency and save fuel as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({C_{1\varepsilon}, C_{2}, C_{3\varepsilon},\sigma_{k}, \sigma_{\varepsilon}}\) :

Turbulence model constants

D :

Diffusion coefficient

f :

Mean mixture fraction

f '2 :

Variance mixture fraction

h :

Enthalpy

G k , G b :

Generation of turbulent kinetic energy

I :

Turbulence intensity

K :

Turbulence kinetic energy

ℓ:

Characteristic length

M w,i :

Molecular weight of species i

MR :

Initial momentum ratio

NO x :

Nitrogen oxides

p(f):

Probability density function

R :

Universal gas constant

r i :

Inner radius

r o :

Outer radius

\({S_{\varphi 1},S_{\varphi 2}}\) :

Source and sink terms

x, y :

Lateral and axial

Y i :

Mass fraction of species i

V i :

Velocity components

Y i :

Mass fraction of species i

\({\Gamma_{\varphi}}\) :

Generalized effective transport coefficient

\({\varepsilon}\) :

Dissipation rate of turbulence kinetic energy

\({\varphi}\) :

Generalized variable

f :

Fuel

i :

Species

ox:

Oxidant

References

  1. Lallemant N., Breussin F., Weber R., Ekman T., Dugue J., Samaniego J.M., Charon O., Van Den A.J., Van Der J., Fujisaki W., Imanari T., NakamuraK T., Iino K.: Heat transfer and pollutant emissions characteristics of oxy-natural gas flames in the 0.7-1MW thermal Input Range. J. Inst. Energy 73, 169–182 (2000)

    Google Scholar 

  2. Ilbas M., Yilmaz I., Veziroglu T.N., Kaplan Y.: Hydrogen as burner fuel: modelling of hydrogen–hydrocarbon composite fuel combustion and NOx formation in a small burner. Int. J. Energy Res. 29, 973–990 (2004)

    Article  Google Scholar 

  3. Boushaki T., Mergheni M.A., Sautet J.C., Labegorre B.: Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner. Exp. Therm. Fluid Sci. 32, 1363–1370 (2008)

    Article  Google Scholar 

  4. Turan A., Parra F.L.: Computational study on the effects of non periodic flow perturbations on the emissions of soot and NOx in a confined turbulent methane/air diffusion flame. Combust. Sci. Tech. 179, 1361–1384 (2007)

    Article  Google Scholar 

  5. Kim H.K., Kim Y., Lee S.M., Ahn K.Y.: Emission Characteristics of the 0.2 MW Oxy-fuel Combustor. Energy Fuels 23, 5331–5337 (2009)

    Article  Google Scholar 

  6. Saqr K.M., Sies M.M., Wahid M.A.: Numerical investigation of the turbulence-combustion interaction in non-premixed CH4/air flames. Int. J. Appl. Math. Mech. 5(8), 69–79 (2009)

    Google Scholar 

  7. Lopez-Parra, F.A.T.: Computational study on the effect of pulse characteristics on the soot and NOx formation and combustion in diffusion flames. In: Proc. European Combust. Meeting Louvain-la-Neuve, Belgium (2005)

  8. Lopez-Parra, F.A.T.: Computational study on the effect of turbulence intensity in soot formation and depletion in an acetylene diffusion flame. In: Proc. European Combust. Meeting, Louvain-la- Neuve, Belgium (2005)

  9. Lopez-Parra F., Turan A.: Computational study on the effects of non-periodic flow perturbations on the emissions of soot and NOx in a confined turbulent methane/air diffusion flame. Combust. Sci. Tech. 179, 1361–1384 (2007)

    Google Scholar 

  10. Versteeg, H.K.; Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method. Addison Wesley-Longman, London (1995)

  11. Shih T.H., Lion W.W., Shabbir A., Yang Z., Zhu J.: A new \({k-\varepsilon }\) eddy-viscosity model for high Reynolds numerical turbulent flows-model development and validation. J. Comput. Fluids 24, 227–238 (1995)

    Article  MATH  Google Scholar 

  12. Lopez-Parra, F.; Turan, A.: Computational study on the effect of turbulence intensity and pulse frequency in soot concentration in an acetylene diffusion flame. In: International Conference on Computational Sciences. ICCS, LCNS, vol. 3516, pp. 120–128. Springer, Berlin (2005)

  13. Poinsot, T.; Veynante, D.: Theoretical and numerical combustion. R.T. Edwards, Inc., Philadelphia, PA (2001)

  14. Hannon, J.; Hearn, S.; Marshall, L.; Zhou, W.: Assessment of CFD approaches to predicting fast chemical reactions. In: Annual AICH Meeting, Chemical and Biological Reactors Session. Miami Beach, FL, November 15–20 (1998)

  15. Repp S., Sadiki A., Schneider C., Hinz A., Landenfeld T., Janicka J.: Prediction of swirling confined diffusion flame with a monte carlo and a presumed-PDF model. Int. J. Heat Mass Trans. 45, 1271–1285 (2002)

    Article  MATH  Google Scholar 

  16. Jiang L.Y., Campbell I.A.: Critical evaluation of NOx modeling in a model combustor. J. Eng. Gas Turb. Power 127, 483–491 (2005)

    Article  Google Scholar 

  17. Peters, N.: Turbulent combustion. Cambridge University Press, Cambridge (2000)

  18. Owen, F.K.; Spaddacini, L.J.; Bowman, C.T.: Aerodynamic phenomena of pollutant formation in combustion. Technical Report, EPA-600/2-76-247a, Washington (1976)

  19. Launder B.E., Spalding D.B.: The numerical computation of turbulent flows. Comput. Meth. Appl. Mech. Eng. 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  20. Drake M.C., Correa S.M., Pitz R.W., Shyy W., Fenimore C.P.: Superequilibrium and thermal nitric oxide formation in turbulent diffusion flames. Combust. Flame 69(3), 347–365 (1987)

    Article  Google Scholar 

  21. Bin J., Hongying L., Guoqiang H., Xingang L.: Study on NO x formation in CH4/Air jet combustion. Chin. J. Chem. Eng. 14(N6), 723–728 (2006)

    Article  Google Scholar 

  22. Hanson, R.K.; Salimian, S.: Survey of Rate Constants in the N/H/O System, Combustion Chemistry. Springer, Berlin (1984)

  23. Raine R.R., Stone C.R., Gould J.: Modeling of nitric oxide formation in spark ignition engines with a multizone burned gas. Combust. Flame 102(3), 241–255 (1995)

    Article  Google Scholar 

  24. De Soete, G.: Overall reaction rates of NO and N 2 formation from fuel nitrogen. In: Proc. Combust. Inst. Pittsburgh, USA, pp. 1093–1102 (1974)

  25. Nisbet J., Davidson L., Olsson E.: Analysis of two fast-chemistry combustion models and turbulence modeling in variable density flow. Comput. Fluid Dyn. 1, 557–563 (1992)

    Google Scholar 

  26. Ilbas M., Yilmaz I., Kaplan Y.: Investigations of hydrogen and hydrogen–hydrocarbon composite fuel combustion and NOx emission characteristics in a model combustor. Int. J. Hydrogen Energy 30, 1139–1147 (2005)

    Article  Google Scholar 

  27. Turns, S.: An introduction to Combustion: Concepts and Applications. 2nd Edn. McGraw Hill, New York (2000). ISBN 0-07-230096-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hashemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashemi, S.A., Fattahi, A. & Sheikhzadeh, G.A. The Effect of Air Preheating on a Sudden-Expansion Turbulent Diffusion Air-fuel Flame. Arab J Sci Eng 38, 2801–2808 (2013). https://doi.org/10.1007/s13369-012-0342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0342-y

Keywords

Navigation