Skip to main content
Log in

Entropy Generation Rate Due to Radiative Transfer Within a Vertical Channel Filled with a Semi-Transparent Porous Medium

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present work deals with entropy generation rate due to flow and heat transfer by unsteady natural convection coupled with thermal radiation within a vertical channel open at both ends and filled with a semi-transparent porous medium. The radiative transfer equation is solved by the finite volume method. The governing equations for this problem and the relevant boundary conditions are non-linear differential equations depending on different dimensionless numbers. Various results are obtained for the average dimensionless conductive, convective, radiative and total Nusselt numbers for different combinations of the Planck number N, optical thickness τ, walls’ emissivity \({\varepsilon}\), single scattering albedo ω and temperature ratio R. The present work mainly investigates the rate of local as well as total entropy generation enhancement due to radiation. Profiles of spatial variations of local entropy generation rate and time variations of the total entropy generation rate are presented for different values of \({10^{-1}\le N \le 10^{-3},0.1\le \tau\le 5, 0\le \varepsilon\le 1,0.1~\le \omega\le 0.9}\) and 0.1 ≤ R ≤ 0.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Aspect ratio of the channel, \({\frac{H}{D}}\)

Bi i,o :

Modified inlet (respectively, outlet) Biot numbers, \({\frac{h_{\rm i,o}D}{\lambda}}\)

Br :

Brinkman number, \({\frac{\mu v^{2}_{\rm ref}}{\lambda\Delta^T}}\)

Br m :

Modified Brinkman number, \({Br = \frac{T_\infty}{\Delta T}}\)

d p :

Particle diameter, m

D :

Channel’s width, m

Da :

Darcy number, \({\frac{k}{D^{2}}}\)

E gen :

Total dimensionless entropy generation number

f :

Binary factor (Eqs. 10–11)

g :

Acceleration due to gravity, m s−2

H :

Channel’s height, m

h i,o :

Heat transfer coefficient at the inlet (respectively at the outlet) of the channel, W m−2 K−1

I :

Dimensionless intensity

I b :

Dimensionless blackbody intensity

k :

Permeability of the porous medium, m2

n :

Refractive index

N :

Planck number, \({\frac{\lambda \beta \Delta T}{4n^2\sigma T_{\rm w}^4}}\)

Nu :

Nusselt number

P :

Dimensionless motorize pressure

R :

Temperature ratio, \({\frac{T_\infty}{T_{\rm w}}}\)

Ra :

Modified Rayleigh number, \({\frac{kg\beta _{\rm f} D\Delta T}{\alpha v_{\rm f}}}\)

R d :

Viscous dissipation term, \({\frac{Br}{Da}}\)

s :

Dimensionless distance traveled by a beam

\({S^{\prime\prime\prime}_{\rm gen}}\) :

Local entropy generation rate per unit volume, W m−3 K−1

S gen :

Dimensionless local entropy generation rate

t :

Dimensionless time

T w :

Wall temperature, K

T :

Dimensionless temperature

ΔT :

Temperature difference, T wT

T :

Environmental temperature, K

u, v :

Dimensionless transverse and axial velocity components, respectively

x, z :

Dimensionless transverse and axial coordinates, respectively

α :

Thermal diffusivity, \({\frac{\lambda}{(\rho c_p)_{\rm f}},\; {\rm m}^{2}~{\rm s}^{-1}}\)

β f :

Fluid coefficient of volume expansion, k−1

β :

Extinction coefficient, m−1

ε :

Emissivity

δ :

Average porosity

\({\phi}\) :

Viscous dissipation function

\({\kappa }\) :

Absorbing coefficient, m−1

λ :

Thermal conductivity, W m−1 K−1

γ :

Volumetric specific heat ratio, \({\frac{(\rho c_{\rm p})}{(\rho c_{\rm p})_{\rm f}}}\)

μ f :

Fluid’s dynamic viscosity, kg m−1 s−1

v f :

Fluid’s kinematic viscosity, m2 s−1

τ :

Optical thickness, βD

ρ :

Reflectivity

ρ f :

Fluid’s density, kg m−3

c p :

Specific heat capacity at constant pressure, J kg−1 K−1

σ :

Stefan–Boltzmann constant

σ s :

Scattering coefficient, m−1

ω :

Single scattering albedo, \({\frac{\sigma_{\rm s}}{\beta}}\)

f:

Fluid

p:

Particle

ref:

Reference

w:

Along a domain boundary

\({\varpropto}\) :

Surrounding quantity

′:

Dimensional quantity

cd:

Conductive

cv:

Convective

ra:

Radiative

References

  1. Tong T.W., Birkebak R.C., Enoch I.E.: Thermal radiation, convection, and conduction in porous media contained in vertical enclosures. ASME J. Heat Transf. 105, 414–418 (1983)

    Article  Google Scholar 

  2. Lauriat, G.; Mesguich, F.: Natural convection and radiation in an enclosure partially filled with a porous insulation. ASME paper 84-WA/HT 1–8 (1984)

  3. Bouallou C., Sacadura J.F.: Radiation, convection and conduction in porous media contained in two-dimensional vertical cavities. J. Heat Transf. 113, 255–258 (1991)

    Article  Google Scholar 

  4. Yucel A., Acharaya S., Williams M.L.: Natural convection and radiation in a square enclosure. Numer. Heat Transf. 15, 261–277 (1989)

    Article  Google Scholar 

  5. Tan, Z.; Howell, J.R.: Combined radiation and natural convection in a participating medium between concentric cylinders. National Heat Transfer Conference, Heat Transfer Phenomena in Radiation, Combustion and Fires, vol. 106, pp. 87–94 (1989)

  6. El Wakil, N.: Etude de transferts de chaleur par conduction, convection et rayonnement couplés dans des milieux semi-transparents fluides ou poreux. Ph.D. Thesis, Institut National des Sciences Appliquées de Lyon, 91 ISAL 0050, 1991

  7. Cherif, B.; Sifaoui, M.S.: Etude du transfert thermique dans un milieu poreux semi-transparent semi-infini par la discrétisation de la luminance associée à à une analyse asymptotique. Rev Gén Therm 1995; Tome 34, no. 408

  8. Ben Kheder, C.; Cherif, B.; Sifaoui, M.S.: Numerical study of transient heat transfer in semi-transparent porous medium. Renew. Energy 27, 543–560 (2002)

    Google Scholar 

  9. Sghaier T., Cherif B., Sifaoui M.S.: Theoretical study of combined radiative, conductive and convective heat transfer in a semi-transparent porous medium in a spherical enclosure. J. Quant. Spectrosc. Radiat. Transf. 45, 751–765 (2002)

    Google Scholar 

  10. Cherif B., Sifaoui M.S.: Theoretical study of heat transfer by radiation conduction and convection in a semi-transparent porous medium in a cylindrical enclosure. J. Quant. Spectrosc. Radiat. Transf. 83, 519–527 (2004)

    Article  Google Scholar 

  11. Slimi K., Zili-Ghedira L., Ben Nasrallah S., Mohamad A.A.: A transient study of coupled natural convection and radiation in a porous vertical channel using the finite volume method. Numer. Heat Transf. A 45, 451–478 (2004)

    Article  Google Scholar 

  12. Slimi K., Mhimid A., Ben Salah M., Mohamad A.A., Ben Nasrallah S., Storesletten L.: Anisotropy effects on heat transfer and fluid flow by unsteady natural convection and radiation in saturated porous media. Numer. Heat Transf. A 48, 763–790 (2005)

    Article  Google Scholar 

  13. Vortmeyer, D.: Radiation in packed solids. In: Rogers, J.T. (ed.) Heat Transfer, Proceedings of the 6th International Heat Transfer Conference, Washington, DC. Hemisphere, vol. 6, pp. 525–539 (1978)

  14. Tien C.L.: Thermal radiation in packed and fluidized beds. J. Heat Transf. 110, 1230–1242 (1988)

    Article  Google Scholar 

  15. Kaviany M., Singh B.P.: Radiative heat transfer in porous media. In: Hartnett, J.P., Irvine, I. (eds) Advances in Heat Transfer, vol 23., pp. 133–186. Academic Press, San Diego (1993)

    Chapter  Google Scholar 

  16. Dombrovsky L.A.: Radiation Heat Transfer in Disperse Systems. Begell House, New York (1996)

    Google Scholar 

  17. Baillis-Doermann, D.; Sacadura, J.F.: Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. In: Mengüç, M.P. (ed.) Radiative Transfer II. Proceedings of the 2nd International Symposium on Radiation Transfer, pp. 1–38. Begell House, New York (1998)

  18. Dincer I., Cengel Y.A.: Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3, 116–149 (2001)

    Article  Google Scholar 

  19. Bejan A.: Entropy Generation Through Heat and Fluid Flow. Wiley, New York (1994)

    Google Scholar 

  20. Bejan A.: Convection Heat Transfer. Wiley, New York (1995)

    Google Scholar 

  21. Bejan A.: Entropy Generation Minimization. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  22. Baytas A.C.: Optimization in an inclined enclosure for minimum entropy generation in natural convection. J. Non-Equilib. Thermodyn. 22, 145–155 (1997)

    Article  MATH  Google Scholar 

  23. Baytas A.C.: Entropy generation for natural convection in an inclined porous cavity. Int. J. Heat Mass Transf. 43, 2089–2099 (2000)

    Article  MATH  Google Scholar 

  24. Tasnim S.H., Shohel M., Mamun M.A.: Entropy generation in a porous channel with hydromagnetic field. Int. J. Exergy 2, 300–308 (2002)

    Article  Google Scholar 

  25. Mahmud S., Fraser R.A.: Vibrational effect on entropy generation in a square porous cavity. Entropy 5, 366–375 (2003)

    Article  Google Scholar 

  26. Slimi K.: Entropy generation for unsteady natural convection and radiation within a tilted saturated porous channel. Int. J. Exergy 3(2), 175–190 (2006)

    Article  Google Scholar 

  27. Raithby G.D., Chui E.H.: A finite volume method for predicting a radiant heat transfer in enclosures with participating media. ASME J. Heat Transf. 112, 415–423 (1990)

    Article  Google Scholar 

  28. Patankar S.V.: Numerical Heat Transfer Fluid Flow. Hemisphere/Mac Graw-Hill, New York (1980)

    MATH  Google Scholar 

  29. Howell, J.R.; Mengüç, M.P.: In: Hartnet,t J.P., Irvine, T. (eds.) Handbook of Heat Transfer Fundamentals, Chap. 7. McGraw Hill, New York (1998)

  30. Singh B.P., Kaviany M.: Modeling radiative heat transfer in packed beds. Int. J. Heat Mass Transf. 35, 1397–1405 (1992)

    Article  Google Scholar 

  31. Fiveland W.A.: Three-dimensional radiative heat transfer solutions by the discrete ordinates method. J. Thermophys. Heat Transf. 2, 309–316 (1988)

    Article  Google Scholar 

  32. Baek S.W., Kim M.Y.: Modification of the discrete-ordinates method in an axisymmetric cylindrical geometry. Numer. Heat Transf. B Fundam. 31, 313–326 (1997)

    Article  Google Scholar 

  33. Moder J.P., Chai J, C. , Parthasarthy G., Lee H.S., Patankar S.V.: Nonaxisymmetric radiative transfer in cylindrical enclosures. Numer. Heat Transf. B Fundam. 30, 437–452 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Slimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slimi, K., Saati, A.A. Entropy Generation Rate Due to Radiative Transfer Within a Vertical Channel Filled with a Semi-Transparent Porous Medium. Arab J Sci Eng 37, 803–820 (2012). https://doi.org/10.1007/s13369-012-0205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0205-6

Keywords

Navigation