Skip to main content
Log in

Dynamic Analysis of Generalized Conservative Nonlinear Oscillators Via Frequency Amplitude Formulation

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, two kinds of frequency–amplitude formulation are used to solve the generalized conservative nonlinear equation in the form of \({{u}^{\prime\prime}+u+u^{2n-1}\sqrt{1+\varepsilon^{2}u^{4m}}=0}\) for any arbitrary power of n and m. This equation is a general form of plasma physics equations and the Duffing equation. A frequency analysis is carried out and the relationship between the angular frequency and the initial amplitude is obtained in closed analytical form. This equation is analyzed in three cases: as a plasma physics equation, as a higher order Duffing equation and as an equation with irrational restoring force. Comparison with the exact integration method is also made, revealing that the present method leads to accurate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  2. Adomian G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer, Boston (1994)

    MATH  Google Scholar 

  3. He J.H., Wu G.-C., Austin F.: The variational iteration method which should be followed. Nonlinear Sci. Lett. A. 1, 1–30 (2010)

    Google Scholar 

  4. He J.H.: Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Nonlinear Sci. Num. Simul. 6(2), 207–208 (2005)

    Google Scholar 

  5. Khan Y.: An effective modification of the Laplace decomposition method for nonlinear equations. Int. J. Nonlinear Sci. Num. Simul. 10(11–12), 1373–1376 (2009)

    Google Scholar 

  6. Khan Y., Wu Q.: Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput. Math. Appl. 61(8), 1963–1967 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. He J.H.: Hamiltonian approach to nonlinear oscillators. Phys. Lett. A 374, 2312–2314 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ahmadian H., Azizi H.: Stability analysis of a nonlinear jointed beam under distributed follower force. J. Vib. Cont. 17, 27–38 (2011)

    Article  MathSciNet  Google Scholar 

  9. Younesian D., Esmailzadeh E.: Vibration suppression of rotating beams using time-varying internal tensile force. J. Sound Vib. 330, 308–320 (2011)

    Article  Google Scholar 

  10. Ahmadian H., Jalali H.: Identification of bolted lap joints parameters in assembled structures. Mech. Syst. Signal Process. 21, 1041–1050 (2007)

    Article  Google Scholar 

  11. Khan Y., Faraz N.: A new approach to differential difference equations. J. Adv. Res. Differ. Equ. 2(2), 1–12 (2010)

    Article  Google Scholar 

  12. Faraz N., Khan Y., Yildirim A.: Analytical approach to two-dimensional viscous flow with a shrinking sheet via variational iteration algorithm-II. J. King. Saud. Uni. Sci. 23, 77–81 (2011)

    Article  Google Scholar 

  13. Ganji D.D., Babazadeh H., Noori F., Pirouz M.M., Janipour M.: An application of homotopy perturbation method for non-linear Blasius equation to boundary layer flow over a flat plate. Int. J. Nonlinear Sci. 7(4), 399–404 (2009)

    MathSciNet  Google Scholar 

  14. Khan Y., Faraz N.: Application of modified Laplace decomposition method for solving boundary layer equation. J. King. Saud. Uni. Sci. 23, 115–119 (2011)

    Article  Google Scholar 

  15. Xu, L.: A Hamiltonian approach for a plasma physics problem. Comput. Math. Appl. (2010). doi:10.1016/j.camwa.2010.06.028

  16. He J.H.: Max-Min approach to nonlinear oscillators. Int. J. Nonlinear Sci. Num. Simul. 9(2), 207–210 (2008)

    Google Scholar 

  17. He J.H.: Variational approach for nonlinear oscillators. Chaos Solitons Fract. 34, 1430–1439 (2007)

    Article  MATH  Google Scholar 

  18. Shou D.H., He J.H.: Application of parameter-expanding method to strongly nonlinear oscillators. Int. J. Nonlinear Sci. Num. Simul. 8(1), 121–124 (2007)

    Article  Google Scholar 

  19. He, J.H.: Iteration perturbation method for strongly nonlinear oscillations. J. Vib. Cont. 7, 631. doi:10.1177/107754630100700501(2001)

  20. Darvishi M.T., Kheybari S., Yildirim A.: Application of He’s parameter-expansion method to a system of two van der Pol oscillators coupled via a Bath. Nonlinear Sci. Lett. A 1, 399–405 (2010)

    Google Scholar 

  21. Özis T., Yildirim A.: Generating the periodic solutions for forcing van der Pol oscillators by the iteration perturbation method. Nonlinear Anal. R. World. Appl. 10, 1984–1989 (2009)

    Article  MATH  Google Scholar 

  22. Zeng D.Q., Lee Y.Y.: Analysis of strongly nonlinear oscillator using the max– min approach. Int. J. Nonlinear Sci. Num. Simul. 10, 1361–1368 (2009)

    Google Scholar 

  23. He J.H.: Comment on ‘He’s frequency formulation for nonlinear oscillators’. Eur. J. Phys. 29, L19–L22 (2008)

    Article  Google Scholar 

  24. He J.H.: An improved amplitude-frequency formulation for nonlinear oscillators. Int. J. Nonlinear Sci. Num. Simul. 9(2), 211–212 (2008)

    Article  Google Scholar 

  25. Younesian D., Askari H., Saadatnia Z., Kalami Yazdi M.: Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency–amplitude formulation and He’s energy balance method. Comput. Math. Appl. 59, 3222–3228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang Y.N., Xu F., Deng L.L.: Exact solution for nonlinear Schrödinger equation by He’s frequency formulation. Comput. Math. Appl. 58, 2449–2451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Geng L., Cai X.-C.: He’s frequency formulation for nonlinear oscillators. Eur. J. Phys. 28, 923–931 (2007)

    Article  MATH  Google Scholar 

  28. Ren, Z.-F.; Gui, W.-K.: He’s frequency formulation for nonlinear oscillators using a golden mean location. Comput. Math Appl. (2010). doi:10.1016/j.camwa.2010.08.047

  29. Cai X.-C., Wu W.-Y.: He’s frequency formulation for the relativistic harmonic oscillator. Comput. Math. Appl. 58, 2358–2359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao L.: He’s frequency-amplitude formulation for nonlinear oscillators with an irrational force. Comput. Math. Appl. 58, 2477–2479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ren Z.F., Liu G.Q., Kang Y.X. et al.: Application of He’s amplitude–frequency formulation to nonlinear oscillators with discontinuities. Phys. Scr. 80, 045003 (2009)

    Article  Google Scholar 

  32. Cai, X.-C.; Liu, J.-F.: Application of the modified frequency formulation to a nonlinear oscillator. Comput. Math. Appl. (2010). doi:10.1016/j.camwa.2010.09.025

  33. Kalami Yazdi M., Khan Y., Madani M., Askari H., Saadatnia Z., Yildirim A.: Analytical solutions for autonomous conservative nonlinear oscillator. Int. J. Nonlinear Sci. Num. Simul. 11, 979–984 (2010)

    Google Scholar 

  34. Mickens R.E.: Harmonic balance and iteration calculations of periodic solutions to \({\ddot {y}+y^{-1}=0}\) . J. Sound Vib. 306, 968–972 (2007)

    Article  MathSciNet  Google Scholar 

  35. Acton, J.R.; Squire, P.T.: Solving Equations with Physical Understanding, chap. 5. Adam Hilger, Bristol (1985)

  36. Mickens R.E.: Oscillations in Planar Dynamic Systems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  37. Belendez A., Mendez D.I., Belendez T., Hernandez A., Alvarez M.L.: Harmonic balance approaches to the nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable. J. Sound Vib. 314, 775–782 (2008)

    Article  Google Scholar 

  38. Ramos J.I.: Generalized decomposition methods for singular oscillators. Chaos Solitons Fractals 42, 1149–1155 (2009)

    Article  MATH  Google Scholar 

  39. Ramos J.I.: An artificial parameter Linstedt–Poincare method for the periodic solutions of nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable. J. Sound Vib. 318, 1281–1290 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Y., Kalami-Yazdi, M., Askari, H. et al. Dynamic Analysis of Generalized Conservative Nonlinear Oscillators Via Frequency Amplitude Formulation. Arab J Sci Eng 38, 175–179 (2013). https://doi.org/10.1007/s13369-011-0035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-011-0035-y

Keywords

Navigation