Skip to main content
Log in

Decoupled algorithm for transient viscoelastic flow modeling

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In the framework of finite element analysis we propose fast and robust time integration scheme for viscoelastic fluid (the Oldroyd-B and Leonov models) flow by way of efficient decoupling of equations. Developed algorithms of the 1st and 2nd order are shown to disclose convergence characteristics equivalent to conventional methods of corresponding order when applied to 1D poiseuille and 2D creeping contraction flow problems. In comparison with fully coupled implicit technique, they notably enhance the computation speed. For the time dependent flow modeling with pressure difference imposed slightly below the steady limit, current as well as conventional approximation scheme has demonstrated fluctuating solution without approaching the steady state. From the result, we may conclude that the existence of upper limit for convergent steady solution implies flow transition to highly elastic time-fluctuating field without steady asymptotic. It is presumably associated with some real unstable elastic flow like re-entrant vortex oscillation and extrudate distortion outside the channel outlet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baaijens, F. P. T., 1998, Mixed finite element methods for viscoelastic flow analysis: a review, J. Non-Newtonian Fluid Mech. 79, 361–385.

    Article  CAS  Google Scholar 

  • Bird, R. B., C. F. Curtiss, R. C. Armstrong, and O. Hassager, 1987, Dynamics of Polymeric Liquids, Wiley, New York.

    Google Scholar 

  • Bogaerds, A. C. B., M. A. Hulsen, G. W. M. Peters, and F. P. T. Baaijens, 2004, Stability analysis of injection molding flows, J. Rheol. 48, 765–785.

    Article  CAS  Google Scholar 

  • Coronado, O. M., D. Arora, M. Behr, and M. Pasquali, 2007, A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation, J. Non-Newtonian Fluids Mech. 147, 189–199.

    Article  CAS  Google Scholar 

  • D’Avino, G. and M. A. Hulsen, 2010, Decoupled second-order transient schemes for the flow of viscoelastic fluids without a viscous solvent contribution, J. Non-Newtonian Fluid Mech. 165, 1602–1612.

    Article  Google Scholar 

  • Duarte, A. S. R., A. I. P. Miranda, and P. J. Oliveira, 2008, Numerical and analytical modeling of unsteady viscoelastic flows: The start-up and pulsating test case problems, J. Non-Newton. Fluid Mech., 154, 153–169.

    Article  CAS  Google Scholar 

  • Fattal, R. and R. Kupferman, 2004, Constitutive laws for the matrix-logarithm of the conformation tensor, J. Non-Newtonian Fluid Mech. 123, 281–285.

    Article  CAS  Google Scholar 

  • Fyrillas, M. M., G. C. Georgious, and D. Vlassopoulos, 1999, Time-dependent plane Poiseuille flow of a Johnson-Segalman fluid, J. Non-Newton. Fluid Mech. 82, 105–123.

    Article  CAS  Google Scholar 

  • Grillet, A. M., A. C. B. Bogaerds, G. W. M. Peters, and F. P. T. Baaijens, 2002, Numerical analysis of flow mark surface defects in injection molding flow, J. Rheol. 46, 651–669.

    Article  CAS  Google Scholar 

  • Hulsen, M. A., M. A., R. Fattal, and R. Kupferman, 2005, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms, J. Non-Newton. Fluid Mech. 127, 27–39.

    Article  CAS  Google Scholar 

  • Joseph, D. D., 1990, Fluid dynamics of viscoelastic liquids, Springer-Verlag, New York.

    Google Scholar 

  • Keshtiban, I. J., B. Puangkird, H. Tamaddon-Jahromi, and M. F. Webster, 2008, Generalised approach for transient computation of start-up pressure-driven viscoelastic flow, J. Non-Newton. Fluid Mech. 151, 2–20.

    Article  CAS  Google Scholar 

  • Kwon, Y. and A. I. Leonov, 1995, Stability constraints in the formulation of viscoelastic constitutive equations, J. Non-Newton. Fluid Mech. 58, 25–46.

    Article  CAS  Google Scholar 

  • Kwon, Y., 2004, Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations, Korea-Australia Rheol. J. 16, 183–191.

    Google Scholar 

  • Kwon, Y., 2011, Numerical description of elastic flow instability and its dependence on liquid viscoelasticity in planar contraction, submitted to J. Rheol.

  • Lee, J., S. Yoon, Y. Kwon, and S. J. Kim, 2004, Practical comparison of differential viscoelastic constitutive equations in finite element analysis of planar 4:1 contraction flow, Rheol. Acta 44, 188–197.

    Article  CAS  Google Scholar 

  • Leonov, A. I., 1976, Nonequilibrium thermodynamics and rheology of viscoelastic polymer media, Rheol. Acta 15, 85–98.

    Article  Google Scholar 

  • McKinley, G. H., J. A. Byars, R. A. Brown, and R. C. Armstrong, 1991, J. Non-Newtonian Fluid Mech. 40, 201–229.

    Article  CAS  Google Scholar 

  • Owens, R. G. and T. N. Phillips, 2002, Computational Rheology, Imperial College Press, London.

    Book  Google Scholar 

  • Park, K. S. and Y. Kwon, 2009, Numerical description of startup viscoelastic plane poiseuille flow, Korea-Australia Rheol. J. 21, 47–58.

    Google Scholar 

  • Poole, R. J., M. A. Alves, and P. J. Oliveira, 2007, Purely elastic flow asymmetries, Phys. Rev. Lett. 99, 164503.

    Article  CAS  Google Scholar 

  • Sato, T. and S. M. Richardson, 1994, Explicit numerical simulation of time-dependent viscoelastic flow problems by a finite element/finite volume method, J. Non-Newton. Fluid Mech. 51, 249–275.

    Article  CAS  Google Scholar 

  • Shaqfeh, E. S. G., 1996, Purely elastic instabilities in viscometric flows, Ann. Rev. Fluid Mech. 28, 129–185.

    Article  Google Scholar 

  • Soulages, J., M. S. N. Oliveira, P. C. Sousa, M. A. Alves, and G. H. McKinley, 2009, Investigating the stability of viscoelastic stagnation flows in T-shaped microchannels, J. Non-Newtonian Fluid Mech. 163, 9–24.

    Article  CAS  Google Scholar 

  • Truesdell, C. and W. Noll, 1992, The Non-Linear Field Theories of Mechanics, Springer-Verlag, Berlin.

    Google Scholar 

  • Van Os, R. G. M. and T. N. Phillips, 2004, Spectral element methods for transient viscoelastic flow problems, J. Comp. Physics 201, 286–314.

    Article  Google Scholar 

  • Waters, N. D. and M. J. King, 1970, Unsteady flow of an elasticoviscous liquid, Rheol. Acta 9, 345–355.

    Article  Google Scholar 

  • Xue, S. C., R. I. Tanner, and N. Phan-Thien, 2004, Numerical modeling of transient viscoelastic flows, J. Non-Newton. Fluid Mech. 123, 33–58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngdon Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, Y., Park, K.S. Decoupled algorithm for transient viscoelastic flow modeling. Korea-Aust. Rheol. J. 24, 53–63 (2012). https://doi.org/10.1007/s13367-012-0006-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-012-0006-1

Keywords

Navigation