Skip to main content
Log in

Abstract

Hedgehogs are (possibly singular and self-intersecting) hypersurfaces that describe Minkowski differences of convex bodies in \(\mathbb {R}^{n+1}\). They are the natural geometrical objects when one seeks to extend parts of the Brunn–Minkowski theory to a vector space which contains convex bodies. In terms of characteristic functions, Minkowski addition of convex bodies correspond to convolution with respect to the Euler characteristic. In this paper, we extend this relationship to hedgehogs with an analytic support function. In this context, resorting only to the support functions and the Euler characteristic, we give various expressions for the index of a point with respect to a hedgehog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandrov, A.D.: On uniqueness theorem for closed surfaces (Russian). Doklady Akad. Nauk SSSR 22, 99–102 (1939)

    Google Scholar 

  • Curry, J., Ghrist, R., Robinson, M.: Euler calculus with applications to signals and sensing. Advances in applied and computational topology. AMS short course on computational topology, New Orleans, 2011. Proc. Symp. Appl. Math. 70, 75–145 (2012)

    Article  MathSciNet  Google Scholar 

  • Geppert, H.: Über den Brunn-Minkowskischen Satz. Math. Z. 42, 238–254 (1937)

    Article  MathSciNet  Google Scholar 

  • Groemer, H.: Minkowski addition and mixed volumes. Geom. Dedic. 6, 141–163 (1977)

    Article  MathSciNet  Google Scholar 

  • Langevin, R., Levitt, G., Rosenberg, H.: Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss). Singularities, Banach Center Publ. 20, 245–253 (1988)

  • MacLaurin, C., Robertson, G.: Euler characteristic in odd dimensions. Aust. Math. Soc. Gaz. 30, 195–199 (2003)

    MathSciNet  Google Scholar 

  • Martinez-Maure, Y.: De nouvelles inégalités géométriques pour les hérissons. Arch. Math. 72, 444–453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Martinez-Maure, Y.: Indice d’un hérisson : étude et applications. Publ. Mat. 44, 237–255 (2000)

    Article  MathSciNet  Google Scholar 

  • Martinez-Maure, Y.: Contre-exemple à une caractérisation conjecturée de la sphère. C. R. Acad. Sci. Paris, Sér. I, 332, 41–44 (2001)

    Google Scholar 

  • Martinez-Maure, Y.: Hedgehogs and zonoids. Adv. Math. 158, 1–17 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Martinez-Maure, Y.: Les multihérissons et le théorème de Sturm-Hurwitz. Arch. Math. 80, 79–86 (2003)

    Article  MathSciNet  Google Scholar 

  • Martinez-Maure, Y.: Théorie des hérissons et polytopes. C. R. Acad. Sci. Paris, Sér. I, 336, 241–244 (2003)

  • Martinez-Maure, Y.: A Brunn-Minkowski theory for minimal surfaces. Ill. J. Math. 48, 589–607 (2004)

    MathSciNet  Google Scholar 

  • Martinez-Maure, Y.: Geometric study of Minkowski differences of plane convex bodies. Can. J. Math. 58, 600–624 (2006)

    Article  MathSciNet  Google Scholar 

  • Martinez-Maure, Y.: A Sturm-type comparison theorem by a geometric study of plane multihedgehogs. Ill. J. Math. 52, 981–993 (2008)

    MathSciNet  Google Scholar 

  • Martinez-Maure, Y.: New notion of index for hedgehogs of \(\mathbb{R}^{3}\) and applications. Eur. J. Comb. 31, 1037–1049 (2010)

    Google Scholar 

  • Martinez-Maure, Y.: Uniqueness results for the Minkowski problem extended to hedgehogs. Cent. Eur. J. Math. 10, 440–450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • McMullen, P.: The polytope algebra. Adv. Math. 78, 76–130 (1989)

    Article  MathSciNet  Google Scholar 

  • Panina, G.: Planar pseudo-triangulations, spherical pseudo-tilings and hyperbolic virtual polytopes. Technical Report math.MG:0607171, arXiv (2006)

  • Pukhlikov, A.V., Khovanskii, A.G.: Finitely additive measures of virtual polytopes. St. Petersbg. Math. J. 4, 337–356 (1993)

    MathSciNet  Google Scholar 

  • Rosenberg, H., Toubiana, E.: Complete minimal surfaces and minimal herissons. J. Differ. Geom. 28, 115–132 (1988)

    MathSciNet  Google Scholar 

  • Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  • Schapira, P.: Operations on constructible functions. J. Pure Appl. Algebra 72, 83–93 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • van den Dries, L.: Tame topology and o-minimal structures. London Mathematical Society, Lecture NoteSeries, 248. Cambridge University Press, Cambridge (1998)

  • Viro, O.: Some integral calculus based on Euler characteristic. Topology and geometry, Rohlin Semin. 1984–1986. Lect. Notes Math. 1346, 127–138 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Martinez-Maure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Maure, Y. Hedgehog theory via Euler calculus. Beitr Algebra Geom 56, 397–421 (2015). https://doi.org/10.1007/s13366-014-0196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-014-0196-4

Keywords

Mathematics Subject Classification (2010)

Navigation