Skip to main content

Advertisement

Log in

Endolysosome iron restricts Tat-mediated HIV-1 LTR transactivation by increasing HIV-1 Tat oligomerization and β-catenin expression

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

HIV-1 transactivator of transcription (Tat) protein is required for HIV-1 replication, and it has been implicated in the pathogenesis of HIV-1-associated neurocognitive disorder (HAND). HIV-1 Tat can enter cells via receptor-mediated endocytosis where it can reside in endolysosomes; upon its escape from these acidic organelles, HIV-1 Tat can enter the cytosol and nucleus where it activates the HIV-1 LTR promoter. Although it is known that HIV-1 replication is affected by the iron status of people living with HIV-1 (PLWH), very little is known about how iron affects HIV-1 Tat activation of the HIV-1 LTR promoter. Because HIV-1 proteins de-acidify endolysosomes and endolysosome de-acidification affects subcellular levels and actions of iron, we tested the hypothesis that the endolysosome pool of iron is sufficient to affect Tat-induced HIV-1 LTR transactivation. Ferric (Fe3+) and ferrous (Fe2+) iron both restricted Tat-mediated HIV-1 LTR transactivation. Chelation of endolysosome iron with deferoxamine (DFO) and 2–2 bipyridyl, but not chelation of cytosolic iron with deferiprone and deferasirox, significantly enhanced Tat-mediated HIV-1 LTR transactivation. In the presence of iron, HIV-1 Tat increasingly oligomerized and DFO prevented the oligomerization. DFO also reduced protein expression levels of the HIV-1 restriction agent beta-catenin in the cytosol and nucleus. These findings suggest that DFO increases HIV-1 LTR transactivation by increasing levels of the more active dimeric form of Tat relative to the less active oligomerized form of Tat, increasing the escape of dimeric Tat from endolysosomes, and/or reducing beta-catenin protein expression levels. Thus, intracellular iron might play a significant role in regulating HIV-1 replication, and these findings raise cautionary notes for chelation therapies in PLWH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afacan YE, Hasan MS, Omene JA (2002) Iron deficiency anemia in HIV infection: immunologic and virologic response. J Natl Med Assoc 94:73–77

    PubMed  PubMed Central  Google Scholar 

  • Arhel N, Kirchhoff F (2010) Host proteins involved in HIV infection: new therapeutic targets. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1802:313–321

  • Bae M, Patel N, Xu H, Lee M, Tominaga-Yamanaka K, Nath A, Geiger J, Gorospe M, Mattson MP, Haughey NJ (2014) Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection. J Neurosci 34:11485–11503

    PubMed  PubMed Central  Google Scholar 

  • Banjoko SO, Oseni FA, Togun RA, Onayemi O, Emma-Okon BO, Fakunle JB (2012) Iron status in HIV-1 infection: implications in disease pathology. BMC Clin Pathol 12:26–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bright NA, Gratian MJ, Luzio JP (2005) Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr Biol 15:360–365

    CAS  PubMed  Google Scholar 

  • Castino R, Fiorentino I, Cagnin M, Giovia A, Isidoro C (2011) Chelation of lysosomal iron protects dopaminergic SH-SY5Y neuroblastoma cells from hydrogen peroxide toxicity by precluding autophagy and Akt dephosphorylation. Toxicological Sciences : an Official Journal of the Society of Toxicology 123:523–541

    CAS  Google Scholar 

  • Chahroudi A, Wagner TA, Persaud D (2018) CNS persistence of HIV-1 in children: the untapped reservoir. Curr HIV/AIDS Rep 15:382–387

    PubMed  Google Scholar 

  • Chang HC, Bayeva M, Taiwo B, Palella FJ Jr, Hope TJ, Ardehali H (2015) Short communication: high cellular iron levels are associated with increased HIV infection and replication. AIDS Res Hum Retroviruses 31:305–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan A, Mehla R, Vijayakumar TS, Handy I (2014) Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology 456–457:1–19

    PubMed  Google Scholar 

  • Chauhan A, Tikoo A (2015) The enigma of the clandestine association between chloroquine and HIV-1 infection. HIV Med 16:585–590

    CAS  PubMed  Google Scholar 

  • Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34:2370–2378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen KA, Myers JT, Swanson JA (2002) pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci 115:599–607

    CAS  PubMed  Google Scholar 

  • Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, Gorry PR (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus–associated dementia. Ann Neurol 66:253–258

    PubMed  Google Scholar 

  • Clark E, Nava B, Caputi M (2017) Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget 8:27569–27581

    PubMed  PubMed Central  Google Scholar 

  • Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, Mills D, Brown MJ, Haigh D, Ward RW, Smith DG, Murray KJ, Reith AD, Holder JC (2000) Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 7:793–803

    CAS  PubMed  Google Scholar 

  • Coombs GS, Schmitt AA, Canning CA, Alok A, Low ICC, Banerjee N, Kaur S, Utomo V, Jones CM, Pervaiz S, Toone EJ, Virshup DM (2012) Modulation of Wnt/β-catenin signaling and proliferation by a ferrous iron chelator with therapeutic efficacy in genetically engineered mouse models of cancer. Oncogene 31:213–225

    CAS  PubMed  Google Scholar 

  • Couret J, Chang TL (2016) Reactive oxygen species in HIV infection. EC Microbiology 3:597–604

    PubMed  PubMed Central  Google Scholar 

  • De Domenico I, Ward DM, Kaplan J (2009) Specific iron chelators determine the route of ferritin degradation. Blood 114:4546–4551

    PubMed  PubMed Central  Google Scholar 

  • de Duve C (2005) The lysosome turns fifty. Nat Cell Biol 7:847–849

    PubMed  Google Scholar 

  • Deshmane SL, Mukerjee R, Fan S, Sawaya BE (2011). High-performance capillary electrophoresis for determining HIV-1 Tat protein in neurons. PLoS One 6:e16148

  • Doherty CP (2007) Host-pathogen interactions: the role of iron. J Nutr 137:1341–1344

    CAS  PubMed  Google Scholar 

  • Doulias P-T, Christoforidis S, Brunk UT, Galaris D (2003) Endosomal and lysosomal effects of desferrioxamine: protection of HeLa cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest. Free Radical Biol Med 35:719–728

    CAS  Google Scholar 

  • El-Amine R, Germini D, Zakharova VV, Tsfasman T, Sheval EV, Louzada RAN, Dupuy C, Bilhou-Nabera C, Hamade A, Najjar F, Oksenhendler E, Lipinski M, Chernyak BV, Vassetzky YS (2018) HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production. Redox Biol 15:97–108

    CAS  PubMed  Google Scholar 

  • El-Hage N, Rodriguez M, Dever SM, Masvekar RR, Gewirtz DA, Shacka JJ (2015) HIV-1 and morphine regulation of autophagy in microglia: limited interactions in the context of HIV-1 Infection and Opioid Abuse. J Virol 89:1024–1035

    PubMed  Google Scholar 

  • Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67:277–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esan MO, van Hensbroek MB, Nkhoma E, Musicha C, White SA, ter Kuile FO, Phiri KS (2013) Iron supplementation in HIV-infected Malawian children with anemia: a double-blind, randomized, controlled trial. Clin Infect Dis 57:1626–1634

    CAS  PubMed  Google Scholar 

  • Espósito BP, Epsztejn S, Breuer W, Cabantchik ZI (2002) A review of fluorescence methods for assessing labile iron in cells and biological fluids. Anal Biochem 304:1–18

    PubMed  Google Scholar 

  • Fernández B, Fdez E, Gómez-Suaga P, Gil F, Molina-Villalba I, Ferrer I, Patel S, Churchill GC, Hilfiker S (2016) Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy 12:1487–1506

    PubMed  PubMed Central  Google Scholar 

  • Fischer R, Piga A, Harmatz P, NIELSEN P, (2005) Monitoring long-term efficacy of iron chelation treatment with biomagnetic liver susceptometry. Ann N Y Acad Sci 1054:350–357

    CAS  PubMed  Google Scholar 

  • Fois AF, Brew BJ (2015) The potential of the CNS as a reservoir for HIV-1 infection: implications for HIV eradication. Curr HIV/AIDS Rep 12:299–303

    PubMed  Google Scholar 

  • Frankel A, Bredt D, Pabo C (1988) Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240:70–73

    CAS  PubMed  Google Scholar 

  • Fredericksen BL, Wei BL, Yao J, Luo T, Garcia JV (2002) Inhibition of endosomal/lysosomal degradation increases the infectivity of human immunodeficiency virus. J Virol 76:11440–11446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freed EO (2001) HIV-1 replication. Somat Cell Mol Genet 26:13–33

    CAS  PubMed  Google Scholar 

  • Glickstein H, El Ben R, Shvartsman M, Cabantchik ZI (2005) Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood 106:3242–3250

    CAS  PubMed  Google Scholar 

  • Gray LR, Roche M, Flynn JK, Wesselingh SL, Gorry PR, Churchill MJ (2014) Is the central nervous system a reservoir of HIV-1? Curr Opin HIV AIDS 9:552–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm C, Chen C-C, Wahl-Schott C, Biel M (2017) Two-pore channels: catalyzers of endolysosomal transport and function. Front Pharmacol 8:45

    PubMed  PubMed Central  Google Scholar 

  • Halcrow P, Khan N, Datta G, Ohm JE, Chen X, Geiger JD (2019) Importance of measuring endolysosome, cytosolic, and extracellular pH in understanding the pathogenesis of and possible treatments for glioblastoma multiforme. Cancer Rep 2(6). https://doi.org/10.1002/cnr2.1193

  • Halcrow PW, Lakpa KL, Khan N, Afghah Z, Miller N, Datta G, Chen X, Geiger JD (2021) HIV-1 gp120-induced endolysosome de-acidification leads to efflux of endolysosome iron, and increases in mitochondrial iron and reactive oxygen species. J Neuroimmune Pharmacol https://doi.org/10.1007/s11481-021-09995-2

  • Haughey NJ, Mattson MP (2002) Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp120. J Acquir Immune Defic Syndr 31(Suppl 2):S55-61

    CAS  PubMed  Google Scholar 

  • Heaton R, Clifford D, Franklin D, Woods S, Ake C, Vaida F, Ellis R, Letendre S, Marcotte T, Atkinson J (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087–2096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hider RC, Zhou T (2005) The design of orally active iron chelators. Ann N Y Acad Sci 1054:141–154

    CAS  PubMed  Google Scholar 

  • Hui L, Chen X, Haughey NJ, Geiger JD (2012) Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 4:243–252

    CAS  PubMed  Google Scholar 

  • Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, Isaguliants MG (2016) Oxidative stress during HIV infection: mechanisms and consequences. Oxid Med Cell Longev 2016:8910396

    PubMed  PubMed Central  Google Scholar 

  • Jeang KT, Xiao H, Rich EA (1999) Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 274:28837–28840

    CAS  PubMed  Google Scholar 

  • Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Hasbun R, Nath A (2013) Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci U S A 110:13588–13593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R (2015) HIV-1 target cells in the CNS. J Neurovirol 21:276–289

    CAS  PubMed  Google Scholar 

  • Kamihara Y, Takada K, Sato T, Kawano Y, Murase K, Arihara Y, Kikuchi S, Hayasaka N, Usami M, Iyama S, Miyanishi K, Sato Y, Kobune M, Kato J (2016) The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/β-catenin signaling in human multiple myeloma. Oncotarget 7:64330–64341

    PubMed  PubMed Central  Google Scholar 

  • Kanti Das T, Wati MR, Fatima-Shad K (2015) Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease. Arch Neurosci 2:e60038

  • Khan N (2020) Possible protective role of 17β-estradiol against COVID-19. J Allergy Infect Dis 1:38–48

    PubMed  PubMed Central  Google Scholar 

  • Khan N, Chen X, Geiger JD (2020a) Role of divalent cations in HIV-1 replication and pathogenicity. Viruses 12:471

    CAS  PubMed Central  Google Scholar 

  • Khan N, Chen X, Geiger JD (2020b) Role of endolysosomes in severe acute respiratory syndrome coronavirus-2 infection and coronavirus disease 2019 pathogenesis: implications for potential treatments. Front Pharmacol 11:595888. https://doi.org/10.3389/fphar.2020.595888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Chen X, Geiger JD (2021) Possible therapeutic use of natural compounds against COVID-19. J Cell Signal 2:63–79

    PubMed  PubMed Central  Google Scholar 

  • Khan N, Datta G, Geiger JD, Chen X (2018) Apolipoprotein E isoform dependently affects Tat-mediated HIV-1 LTR transactivation. J Neuroinflammation 15:91

    PubMed  PubMed Central  Google Scholar 

  • Khan N, Halcrow PW, Lakpa KL, Afghah Z, Miller NM, Dowdy SF, Geiger JD, Chen X (2020c) Two-pore channels regulate Tat endolysosome escape and Tat-mediated HIV-1 LTR transactivation. Faseb j 34:4147–4162

    CAS  PubMed  Google Scholar 

  • Khan N, Haughey NJ, Nath A, Geiger JD (2019a) Involvement of organelles and inter-organellar signaling in the pathogenesis of HIV-1 associated neurocognitive disorder and Alzheimer’s disease. Brain Res 1722:146389

  • Khan N, Lakpa KL, Halcrow PW, Afghah Z, Miller NM, Geiger JD, Chen X (2019b) BK channels regulate extracellular Tat-mediated HIV-1 LTR transactivation. Sci Rep 9:12285

    PubMed  PubMed Central  Google Scholar 

  • Kolson DL, Collman R, Hrin R, Balliet JW, Laughlin M, McGann KA, Debouck C, Gonzalez-Scarano F (1994) Human immunodeficiency virus type 1 Tat activity in human neuronal cells: uptake and trans-activation. J Gen Virol 75(Pt 8):1927–1934

    CAS  PubMed  Google Scholar 

  • Kumari N, Ammosova T, Diaz S, Lin X, Niu X, Ivanov A, Jerebtsova M, Dhawan S, Oneal P, Nekhai S (2016) Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease. Blood Adv 1:170–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz T, Gustafsson B, Brunk UT (2006) Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. FEBS J 273:3106–3117

    CAS  PubMed  Google Scholar 

  • Lakpa KL, Khan N, Afghah Z, Chen X, Geiger JD (2021) Lysosomal stress response (LSR): physiological importance and pathological relevance. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-021-09990-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    CAS  PubMed  Google Scholar 

  • Liang C, Wainberg M (2002) The role of Tat in HIV-1 replication: an activator and/or a suppressor? AIDS Rev 4:41–49

    PubMed  Google Scholar 

  • Lin YF, Cheng CW, Shih CS, Hwang JK, Yu CS, Lu CH (2016) MIB: metal ion-binding site prediction and docking server. J Chem Inf Model 56:2287–2291

    CAS  PubMed  Google Scholar 

  • Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387

    CAS  PubMed  Google Scholar 

  • Lloyd JB, Cable H, Rice-Evans C (1991) Evidence that desferrioxamine cannot enter cells by passive diffusion. Biochem Pharmacol 41:1361–1363

    CAS  PubMed  Google Scholar 

  • Louboutin J-P, Agrawal L, Reyes BAS, Van Bockstaele EJ, Strayer DS (2014) Oxidative stress is associated with neuroinflammation in animal models of HIV-1 Tat neurotoxicity. Antioxidants (basel, Switzerland) 3:414–438

    Google Scholar 

  • Louboutin J-P, Strayer D (2014 Role of oxidative stress in HIV-1-associated neurocognitive disorder and protection by gene delivery of antioxidant enzymes. In: Antioxidants (Basel, Switzerland), pp 770–797

  • Louboutin JP, Agrawal L, Reyes BAS, Van Bockstaele EJ, Strayer DS (2007) Protecting neurons from HIV-1 gp120-induced oxidant stress using both localized intracerebral and generalized intraventricular administration of antioxidant enzymes delivered by SV40-derived vectors. Gene Ther 14:1650–1661

    CAS  PubMed  Google Scholar 

  • Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    CAS  PubMed  Google Scholar 

  • Luzio JP, Pryor PR, Gray SR, Gratian MJ, Piper RC, Bright NA (2005) Membrane traffic to and from lysosomes. Biochem Soc Symp 72:77–86

    CAS  Google Scholar 

  • Mancone C, Grimaldi A, Refolo G, Abbate I, Rozera G, Benelli D, Fimia GM, Barnaba V, Tripodi M, Piacentini M, Ciccosanti F (2017) Iron overload down-regulates the expression of the HIV-1 Rev cofactor eIF5A in infected T lymphocytes. Proteome Science 15:18

    PubMed  PubMed Central  Google Scholar 

  • Mann DA, Frankel AD (1991) Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 10:1733–1739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, Rohr O, Schwartz C (2016) Targeting the brain reservoirs: toward an HIV cure. Front Immunol 7:397

    PubMed  PubMed Central  Google Scholar 

  • McGuire C, Stransky L, Cotter K, Forgac M (2017) Regulation of V-ATPase Activity Front Biosci (landmark Ed) 22:609–622

    CAS  Google Scholar 

  • Meeker RB, Asahchop E, Power C (2014) The brain and HAART: collaborative and combative connections. Curr Opin HIV AIDS 9:579–584

    CAS  PubMed  Google Scholar 

  • Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86

    CAS  PubMed  Google Scholar 

  • Mobarra N, Shanaki M, Ehteram H, Nasiri H, Sahmani M, Saeidi M, Goudarzi M, Pourkarim H, Azad M (2016) A review on iron chelators in treatment of iron overload syndromes. International Journal of Hematology-Oncology and Stem Cell Research 10:239–247

    PubMed  PubMed Central  Google Scholar 

  • Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD (2000) Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol 47:186–194

    CAS  PubMed  Google Scholar 

  • Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70:1475–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nekhai S, Kumari N, Dhawan S (2013) Role of cellular iron and oxygen in the regulation of HIV-1 infection. Future Virol 8:301–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nixon RA, Cataldo AM (2006) Lysosomal system pathways: genes to neurodegeneration in Alzheimer's disease. 9(3):277–89

  • Perera RM, Zoncu R (2016) The lysosome as a regulatory hub. Annu Rev Cell Dev Biol 32:223–253

    CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    CAS  PubMed  Google Scholar 

  • Prasad H, Rao R (2018) Histone deacetylase-mediated regulation of endolysosomal pH. J Biol Chem 293:6721–6735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera LE, Colon K, Cantres-Rosario YM, Zenon FM, Melendez LM (2014) Macrophage derived cystatin B/cathepsin B in HIV replication and neuropathogenesis. Curr HIV Res 12:111–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romani B, Engelbrecht S, Glashoff RH (2010) Functions of Tat: the versatile protein of human immunodeficiency virus type 1. J Gen Virol 91:1–12

    CAS  PubMed  Google Scholar 

  • Ronaldson PT, Bendayan R (2008) HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells. J Neurochem 106:1298–1313

    CAS  PubMed  Google Scholar 

  • Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC (2016) HIV-associated neurocognitive disorder–pathogenesis and prospects for treatment. Nat Rev Neurol 12:234–248

    PubMed  PubMed Central  Google Scholar 

  • Slice LW, Codner E, Antelman D, Holly M, Wegrzynski B, Wang J, Toome V, Hsu MC, Nalin CM (1992) Characterization of recombinant HIV-1 Tat and its interaction with TAR RNA. Biochemistry 31:12062–12068

    CAS  PubMed  Google Scholar 

  • Song L, Nath A, Geiger JD, Moore A, Hochman S (2003) Human immunodeficiency virus type 1 Tat protein directly activates neuronal N-methyl-D-aspartate receptors at an allosteric zinc-sensitive site. J Neurovirol 9:399–403

    CAS  PubMed  Google Scholar 

  • Song S, Christova T, Perusini S, Alizadeh S, Bao R-Y, Miller BW, Hurren R, Jitkova Y, Gronda M, Isaac M, Joseph B, Subramaniam R, Aman A, Chau A, Hogge DE, Weir SJ, Kasper J, Schimmer AD, Al-awar R, Wrana JL, Attisano L (2011) Wnt inhibitor screen reveals iron dependence of β-catenin signaling in cancers. Can Res 71:7628–7639

    CAS  Google Scholar 

  • Sonia M, Albert D, Gilbert B, Isabelle R, Catherine D, Herve T-D, Malika M, Herve M, Catherine T, Corinne B, Pascale P, Francoise D-G, Andreas S, Philippe B, Stephen AS, Grant RC, Erwann PL (2012) Antiretroviral therapy does not block the secretion of the human immunodeficiency virus Tat protein. Infectious Disorders - Drug Targets 12:81–86

    Google Scholar 

  • Spudich S, Gonzalez-Scarano F (2012) HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb Perspect Med 2:a007120

  • Terman A, Kurz T (2013) Lysosomal iron, iron chelation, and cell death. Antioxid Redox Signal 18:888–898

    CAS  PubMed  Google Scholar 

  • Thompson KA, Cherry CL, Bell JE, McLean CA (2011) Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol 179:1623–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tooze SA, Dikic I (2016) Autophagy captures the nobel prize. Cell 167:1433–1435

    CAS  PubMed  Google Scholar 

  • Tosi G, Meazza R, De Lerma BA, D’Agostino A, Mazza S, Corradin G, Albini A, Noonan DM, Ferrini S, Accolla RS (2000) Highly stable oligomerization forms of HIV-1 Tat detected by monoclonal antibodies and requirement of monomeric forms for the transactivating function on the HIV-1 LTR. Eur J Immunol 30:1120–1126

    CAS  PubMed  Google Scholar 

  • Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261

    CAS  PubMed  Google Scholar 

  • Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, Suwanwela NC, Jagodzinski L, Michael N, Spudich S, van Griensven F, de Souza M, Kim J, Ananworanich J, Group RSS (2012) Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 206:275–282

    Google Scholar 

  • Veenhuis RT, Clements JE, Gama L (2019) HIV eradication strategies: implications for the central nervous system. Curr HIV/AIDS Rep 16:96–104

    PubMed  PubMed Central  Google Scholar 

  • Velasquez S, Prevedel L, Valdebenito S, Gorska AM, Golovko M, Khan N, Geiger J, Eugenin EA (2020) Circulating levels of ATP is a biomarker of HIV cognitive impairment. EBioMedicine 51:102503

  • Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 15:2347–2360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijaykumar T, Nath A, Chauhan A (2008) Chloroquine mediated molecular tuning of astrocytes for enhanced permissiveness to HIV infection. Virology 381:1–5

    CAS  PubMed  Google Scholar 

  • Vives E (2003) Cellular uptake [correction of utake] of the Tat peptide: an endocytosis mechanism following ionic interactions. J Mol Recognit 16:265–271

    CAS  PubMed  Google Scholar 

  • Wang H, Li Z, Niu J, Xu Y, Ma L, Lu A, Wang X, Qian Z, Huang Z, Jin X, Leng Q, Wang J, Zhong J, Sun B, Meng G (2018) Antiviral effects of ferric ammonium citrate. Cell Discov 4:14

    PubMed  PubMed Central  Google Scholar 

  • Wideman JG, Leung KF, Field MC, Dacks JB (2014) The cell biology of the endocytic system from an evolutionary perspective. Cold Spring Harb Perspect Biol 6:a016998

  • Xiong J, Zhu MX (2016) Regulation of lysosomal ion homeostasis by channels and transporters. Science China Life Sciences 59:777–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Institute of General Medical Sciences (P30GM100329, U54GM115458), the National Institute of Mental Health (R01MH100972, R01MH105329, R01MH119000), the National Institute of Neurological Diseases and Stroke (2R01NS065957), and the National Institute of Drug Abuse (2R01DA032444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Geiger.

Ethics declarations

Ethical approval (animals)

Although the University of North Dakota Animal Care and Use Committee is adherent with the Guide for the Care and Use of Laboratory Animals (NIH publication number 80–23), no animal studies were conducted as part of this work.

Ethical approval (humans)

This work did not use human participants and did not use any materials of human origin.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Halcrow, P.W., Lakpa, L.K. et al. Endolysosome iron restricts Tat-mediated HIV-1 LTR transactivation by increasing HIV-1 Tat oligomerization and β-catenin expression. J. Neurovirol. 27, 755–773 (2021). https://doi.org/10.1007/s13365-021-01016-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-021-01016-5

Keywords

Navigation