Skip to main content

Advertisement

Log in

Astrocyte activation and altered metabolism in normal aging, age-related CNS diseases, and HAND

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Astrocytes regulate local cerebral blood flow, maintain ion and neurotransmitter homeostasis, provide metabolic support, regulate synaptic activity, and respond to brain injury, insults, and infection. Because of their abundance, extensive connectivity, and multiple roles in the brain, astrocytes are intimately involved in normal functioning of the CNS and their dysregulation can lead to neuronal dysfunction. In normal aging, decreased biological functioning and reduced cognitive abilities are commonly experienced in individuals free of overt neurological disease. Moreover, in several age-related CNS diseases, chronic inflammation and altered metabolism have been reported. Since people with HIV (PWH) are reported to experience rapid aging with chronic inflammation, altered brain metabolism is likely to be exacerbated. In fact, many studies report altered metabolism in astrocytes in diseases such as Alzheimer’s, Parkinson’s, and HIV. This review will address the roles of astrocyte activation and altered metabolism in normal aging, in age-related CNS disease, and in HIV-associated neurocognitive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeti R, Abramov AY, Duchen MR (2011) Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain 134:1658–1672

    Article  PubMed  Google Scholar 

  • Abramov AY, Canevari L, Duchen MR (2004) Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberdi E, Wyssenbach A, Alberdi M, Sánchez-Gómez MV, Cavaliere F, Rodríguez JJ, Verkhratsky A, Matute C (2013) Ca(2+)-dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell 12:292–302

    Article  CAS  PubMed  Google Scholar 

  • Andersen AB, Law I, Krabbe KS, Bruunsgaard H, Ostrowski SR, Ullum H, Højgaard L, Lebech A, Gerstoft J, Kjaer A (2010) Cerebral FDG-PET scanning abnormalities in optimally treated HIV patients. J Neuroinflammation 7:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atwood WJ, Tornatore CS, Meyers K, Major EO (1993) HIV-1 mRNA transcripts from persistently infected human fetal astrocytes. Ann N Y Acad Sci 693:324–325

    Article  CAS  PubMed  Google Scholar 

  • Avdoshina V, Fields JA, Castellano P, Dedoni S, Palchik G, Trejo M, Adame A, Rockenstein E, Eugenin E, Masliah E, Mocchetti I (2016) The HIV protein gp120 alters mitochondrial dynamics in neurons. Neurotox Res 29:583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribbs DH, Cotman CW (2014) Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer’s disease. Neurobiol Aging 35:1961–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci 14:750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigl M, Brückner MK, Arendt T, Bigl V, Eschrich K (1999) Activities of key glycolytic enzymes in the brains of patients with Alzheimer’s disease. J Neural Transm (Vienna) 106:499–511

    Article  CAS  Google Scholar 

  • Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ (2018) The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep 22:269–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgmann K, Ghorpade A (2018) Methamphetamine augments concurrent astrocyte mitochondrial stress, oxidative burden, and antioxidant capacity: tipping the balance in HIV-associated neurodegeneration. Neurotox Res 33:433–447

    Article  CAS  PubMed  Google Scholar 

  • Borjabad A, Volsky DJ (2012) Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer’s disease, and multiple sclerosis. J NeuroImmune Pharmacol 7:914–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Borjabad A, Brooks AI, Volsky DJ (2010) Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J NeuroImmune Pharmacol 5:44–62

    Article  PubMed  Google Scholar 

  • Boumezbeur F, Mason GF, de Graaf RA, Behar KL, Cline GW, Shulman GI, Rothman DL, Petersen KF (2010) Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 30:211–221

    Article  CAS  PubMed  Google Scholar 

  • Brack-Werner R (1999) Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13:1–22

    Article  CAS  PubMed  Google Scholar 

  • Broe M, Kril J, Halliday GM (2004) Astrocytic degeneration relates to the severity of disease in frontotemporal dementia. Brain 127:2214–2220

    Article  PubMed  Google Scholar 

  • Brooks WM, Lynch PJ, Ingle CC, Hatton A, Emson PC, Faull RL, Starkey MP (2007) Gene expression profiles of metabolic enzyme transcripts in Alzheimer’s disease. Brain Res 1127:127–135

    Article  CAS  PubMed  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Wan CQ, Liu Z (2017) Astrocyte and Alzheimer’s disease. J Neurol 264:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Campuzano O, Castillo-Ruiz MM, Acarin L, Castellano B, Gonzalez B (2009) Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J Neurosci Res 87:2484–2497

    Article  CAS  PubMed  Google Scholar 

  • Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A (2012) Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53:37–46

    Article  CAS  PubMed  Google Scholar 

  • Cassol E, Misra V, Dutta A, Morgello S, Gabuzda D (2014) Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS 28:1579–1591

    Article  CAS  PubMed  Google Scholar 

  • Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115:E1896–E1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen RA, Seider TR, Navia B (2015) HIV effects on age-associated neurocognitive dysfunction: premature cognitive aging or neurodegenerative disease? Alzheimers Res Ther 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole JH, Underwood J, Caan MW, De Francesco D, van Zoest RA, Leech R, Wit FW, Portegies P, Geurtsen GJ, Schmand BA, Schim van der Loeff MF, Franceschi C, Sabin CA, Majoie CB, Winston A, Reiss P, Sharp DJ, collaboration C (2017) Increased brain-predicted aging in treated HIV disease. Neurology 88:1349–1357

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunnane SC, Courchesne-Loyer A, St-Pierre V, Vandenberghe C, Pierotti T, Fortier M, Croteau E, Castellano CA (2016) Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann N Y Acad Sci 1367:12–20

    Article  CAS  PubMed  Google Scholar 

  • De Santi S, de Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A, Tsui WH, Kandil E, Boppana M, Daisley K, Wang GJ, Schlyer D, Fowler J (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 22:529–539

    Article  PubMed  Google Scholar 

  • De Simone FI, Darbinian N, Amini S, Muniswamy M, White MK, Elrod JW, Datta PK, Langford D, Khalili K (2016) HIV-1 Tat and cocaine impair survival of cultured primary neuronal cells via a mitochondrial pathway. J NeuroImmune Pharmacol 11:358–368

    Article  PubMed  PubMed Central  Google Scholar 

  • De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

    Article  PubMed  CAS  Google Scholar 

  • Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, Ellis R, Cherner M, Grant I, Masliah E (2013) Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology 80:1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickens AM, Anthony DC, Deutsch R, Mielke MM, Claridge TD, Grant I, Franklin D, Rosario D, Marcotte T, Letendre S, McArthur JC, Haughey NJ (2015) Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural mechanism regulating shifts in cognitive states of HIV-infected patients. AIDS 29:559–569

    CAS  PubMed  Google Scholar 

  • Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duara R, Grady C, Haxby J, Sundaram M, Cutler NR, Heston L, Moore A, Schlageter N, Larson S, Rapoport SI (1986) Positron emission tomography in Alzheimer’s disease. Neurology 36:879–887

    Article  CAS  PubMed  Google Scholar 

  • Dufour CA, Marquine MJ, Fazeli PL, Henry BL, Ellis RJ, Grant I, Moore DJ, Group H (2013) Physical exercise is associated with less neurocognitive impairment among HIV-infected adults. J Neuro-Oncol 19:410–417

    Google Scholar 

  • Dumas JA (2015) What is normal cognitive aging? Evidence from task-based functional neuroimaging. Curr Behav Neurosci Rep 2:256–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebert D, Haller RG, Walton ME (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci 23:5928–5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edén A, Price RW, Spudich S, Fuchs D, Hagberg L, Gisslén M (2007) Immune activation of the central nervous system is still present after >4 years of effective highly active antiretroviral therapy. J Infect Dis 196:1779–1783

    Article  PubMed  CAS  Google Scholar 

  • Emirandetti A, Graciele Zanon R, Sabha M, de Oliveira AL (2006) Astrocyte reactivity influences the number of presynaptic terminals apposed to spinal motoneurons after axotomy. Brain Res 1095:35–42

    Article  CAS  PubMed  Google Scholar 

  • Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2:175–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67:277–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer I (2017) Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 27:645–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitting S, Knapp PE, Zou S, Marks WD, Bowers MS, Akbarali HI, Hauser KF (2014) Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na+ influx, mitochondrial instability, and Ca2+ overload. J Neurosci 34:12850–12864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB, Initiative ADN (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117:20–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Förster S, Grimmer T, Miederer I, Henriksen G, Yousefi BH, Graner P, Wester HJ, Förstl H, Kurz A, Dickerson BC, Bartenstein P, Drzezga A (2012) Regional expansion of hypometabolism in Alzheimer’s disease follows amyloid deposition with temporal delay. Biol Psychiatry 71:792–797

    Article  PubMed  CAS  Google Scholar 

  • Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Shi D, Westaway D, Jhamandas JH (2015) Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. J Biol Chem 290:12504–12513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W (2011) Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis 2:e167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, Keller E, Horváth MC, Nag S, Hermecz I, Magyar K, Halldin C (2011) Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int 58:60–68

    Article  PubMed  CAS  Google Scholar 

  • Halim ND, Mcfate T, Mohyeldin A, Okagaki P, Korotchkina LG, Patel MS, Jeoung NH, Harris RA, Schell MJ, Verma A (2010) Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58:1168–1176

    Article  PubMed  PubMed Central  Google Scholar 

  • Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar E, Alger J, Singer E, Campbell T, Yiannoutsos C, Cohen R, Navia B, Consortium HN (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25:625–633

    Article  CAS  PubMed  Google Scholar 

  • Harris JL, Yeh HW, Swerdlow RH, Choi IY, Lee P, Brooks WM (2014) High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging. Neurobiol Aging 35:1686–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris JL, Choi IY, Brooks WM (2015) Probing astrocyte metabolism in vivo: proton magnetic resonance spectroscopy in the injured and aging brain. Front Aging Neurosci 7:202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, Group C (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppe JB, Rattray M, Tu H, Salbego CG, Cimarosti H (2013) SUMO-1 conjugation blocks beta-amyloid-induced astrocyte reactivity. Neurosci Lett 546:51–56

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Liu Y, Wang X, Ma H, He J, Zhang Y, Yu C, Guan W, Ma Y (2011) The effects of amyloid-β42 oligomer on the proliferation and activation of astrocytes in vitro. In Vitro Cell Dev Biol Anim 47:573–580

    Article  CAS  PubMed  Google Scholar 

  • Hui L, Chen X, Bhatt D, Geiger NH, Rosenberger TA, Haughey NJ, Masino SA, Geiger JD (2012) Ketone bodies protection against HIV-1 Tat-induced neurotoxicity. J Neurochem 122:382–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibáñez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, Rapoport SI, Schapiro MB, Horwitz B (1998) Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 50:1585–1593

    Article  PubMed  Google Scholar 

  • Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT, Irizarry MC (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62:925–931

    Article  CAS  PubMed  Google Scholar 

  • Jana A, Pahan K (2010) Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease. J Neurosci 30:12676–12689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Cadenas E (2014) Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell 13:1059–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John Lin CC, Yu K, Hatcher A, Huang TW, Lee HK, Carlson J, Weston MC, Chen F, Zhang Y, Zhu W, Mohila CA, Ahmed N, Patel AJ, Arenkiel BR, Noebels JL, Creighton CJ, Deneen B (2017) Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci 20:396–405

    Article  CAS  PubMed  Google Scholar 

  • Kadish I, Thibault O, Blalock EM, Chen KC, Gant JC, Porter NM, Landfield PW (2009) Hippocampal and cognitive aging across the lifespan: a bioenergetic shift precedes and increased cholesterol trafficking parallels memory impairment. J Neurosci 29:1805–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalpouzos G, Chételat G, Baron JC, Landeau B, Mevel K, Godeau C, Barré L, Constans JM, Viader F, Eustache F, Desgranges B (2009) Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging 30:112–124

    Article  CAS  PubMed  Google Scholar 

  • Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ (2003) Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol 162:1693–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitayama H, Miura Y, Ando Y, Hoshino S, Ishizaka Y, Koyanagi Y (2008) Human immunodeficiency virus type 1 Vpr inhibits axonal outgrowth through induction of mitochondrial dysfunction. J Virol 82:2528–2542

    Article  CAS  PubMed  Google Scholar 

  • Lana D, Iovino L, Nosi D, Wenk GL, Giovannini MG (2016) The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats. Exp Gerontol 83:71–88

    Article  PubMed  Google Scholar 

  • Laranjeira A, Schulz J, Dotti CG (2016) Genes related to fatty acid β-oxidation play a role in the functional decline of the Drosophila brain with age. PLoS One 11:e0161143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25:294–297

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Miller JA, Shapshak P, Gelman B, Singer EJ, Hinkin CH, Commins D, Morgello S, Grant I, Horvath S (2013) Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer’s disease. BMC Med Genet 6:4

    CAS  Google Scholar 

  • Levine AJ, Quach A, Moore DJ, Achim CL, Soontornniyomkij V, Masliah E, Singer EJ, Gelman B, Nemanim N, Horvath S (2016) Accelerated epigenetic aging in brain is associated with pre-mortem HIV-associated neurocognitive disorders. J Neuro-Oncol 22:366–375

    CAS  Google Scholar 

  • Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 105:4441–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenberger U (2014) Human cognitive aging: corriger la fortune? Science 346:572–578

    Article  CAS  PubMed  Google Scholar 

  • Lynch AM, Murphy KJ, Deighan BF, O'Reilly JA, Gun'ko YK, Cowley TR, Gonzalez-Reyes RE, Lynch MA (2010) The impact of glial activation in the aging brain. Aging Dis 1:262–278

    PubMed  PubMed Central  Google Scholar 

  • Maher FO, Martin DS, Lynch MA (2004) Increased IL-1beta in cortex of aged rats is accompanied by downregulation of ERK and PI-3 kinase. Neurobiol Aging 25:795–806

    Article  CAS  PubMed  Google Scholar 

  • Mamik MK, Asahchop EL, Chan WF, Zhu Y, Branton WG, McKenzie BA, Cohen EA, Power C (2016) Insulin treatment prevents neuroinflammation and neuronal injury with restored neurobehavioral function in models of HIV/AIDS neurodegeneration. J Neurosci 36:10683–10695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masliah E, Ge N, Mucke L (1996) Pathogenesis of HIV-1 associated neurodegeneration. Crit Rev Neurobiol 10:57–67

    Article  CAS  PubMed  Google Scholar 

  • Mateen FJ, Shinohara RT, Carone M, Miller EN, McArthur JC, Jacobson LP, Sacktor N, Investigators MACSM (2012) Neurologic disorders incidence in HIV+ vs HIV- men: multicenter AIDS cohort study, 1996-2011. Neurology 79:1873–1880

    Article  PubMed  PubMed Central  Google Scholar 

  • Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93:421–443

    Article  CAS  PubMed  Google Scholar 

  • Miller RH, Raff MC (1984) Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 4:585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202:13–23

    Article  CAS  PubMed  Google Scholar 

  • Morgan TE, Xie Z, Goldsmith S, Yoshida T, Lanzrein AS, Stone D, Rozovsky I, Perry G, Smith MA, Finch CE (1999) The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 89:687–699

    Article  CAS  PubMed  Google Scholar 

  • Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, De Santi S, Reisberg B, Wisniewski T, de Leon MJ (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 36:811–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagele RG, D'Andrea MR, Lee H, Venkataraman V, Wang HY (2003) Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res 971:197–209

    Article  CAS  PubMed  Google Scholar 

  • Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674

    Article  CAS  PubMed  Google Scholar 

  • Natarajaseenivasan K, Cotto B, Shanmughapriya S, Lombardi AA, Datta PK, Madesh M, Elrod JW, Khalili K, Langford D (2018) Astrocytic metabolic switch is a novel etiology for cocaine and HIV-1 Tat-mediated neurotoxicity. Cell Death Dis 9:415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nichols NR, Day JR, Laping NJ, Johnson SA, Finch CE (1993) GFAP mRNA increases with age in rat and human brain. Neurobiol Aging 14:421–429

    Article  CAS  PubMed  Google Scholar 

  • Nilsen LH, Witter MP, Sonnewald U (2014) Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer’s disease. J Cereb Blood Flow Metab 34:906–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan Y, Maher FO, Martin DS, Clarke RM, Brady MT, Bolton AE, Mills KH, Lynch MA (2005) Role of interleukin-4 in regulation of age-related inflammatory changes in the hippocampus. J Biol Chem 280:9354–9362

    Article  CAS  PubMed  Google Scholar 

  • Norman JP, Perry SW, Kasischke KA, Volsky DJ, Gelbard HA (2007) HIV-1 trans activator of transcription protein elicits mitochondrial hyperpolarization and respiratory deficit, with dysregulation of complex IV and nicotinamide adenine dinucleotide homeostasis in cortical neurons. J Immunol 178:869–876

    Article  CAS  PubMed  Google Scholar 

  • Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Article  CAS  PubMed  Google Scholar 

  • Oh H, Madison C, Baker S, Rabinovici G, Jagust W (2016) Dynamic relationships between age, amyloid-β deposition, and glucose metabolism link to the regional vulnerability to Alzheimer’s disease. Brain 139:2275–2289

    Article  PubMed  PubMed Central  Google Scholar 

  • Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V (2014) Fatty acids in energy metabolism of the central nervous system. Biomed Res Int 2014:472459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfefferbaum A, Rogosa DA, Rosenbloom MJ, Chu W, Sassoon SA, Kemper CA, Deresinski S, Rohlfing T, Zahr NM, Sullivan EV (2014) Accelerated aging of selective brain structures in human immunodeficiency virus infection: a controlled, longitudinal magnetic resonance imaging study. Neurobiol Aging 35:1755–1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Porchet R, Probst A, Bouras C, Dráberová E, Dráber P, Riederer BM (2003) Analysis of glial acidic fibrillary protein in the human entorhinal cortex during aging and in Alzheimer’s disease. Proteomics 3:1476–1485

    Article  CAS  PubMed  Google Scholar 

  • Ranki A, Nyberg M, Ovod V, Haltia M, Elovaara I, Raininko R, Haapasalo H, Krohn K (1995) Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS 9:1001–1008

    Article  CAS  PubMed  Google Scholar 

  • Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30:730–748

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez JJ, Olabarria M, Chvatal A, Verkhratsky A (2009) Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16:378–385

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez JJ, Yeh CY, Terzieva S, Olabarria M, Kulijewicz-Nawrot M, Verkhratsky A (2014) Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging 35:15–23

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A (2016) Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 323:170–182

    Article  PubMed  CAS  Google Scholar 

  • Rozzi SJ, Avdoshina V, Fields JA, Trejo M, Ton HT, Ahern GP, Mocchetti I (2017) Human immunodeficiency virus promotes mitochondrial toxicity. Neurotox Res 32:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ru W, Tang SJ (2017) HIV-associated synaptic degeneration. Mol Brain 10:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabri F, Titanji K, De Milito A, Chiodi F (2003) Astrocyte activation and apoptosis: their roles in the neuropathology of HIV infection. Brain Pathol 13:84–94

    Article  PubMed  Google Scholar 

  • Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, Löffler J, Richards JG (1994) Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62:15–30

    Article  CAS  PubMed  Google Scholar 

  • Scuderi C, Stecca C, Iacomino A, Steardo L (2013) Role of astrocytes in major neurological disorders: the evidence and implications. IUBMB Life 65:957–961

    Article  CAS  PubMed  Google Scholar 

  • Serramía MJ, Muñoz-Fernández M, Álvarez S (2015) HIV-1 increases TLR responses in human primary astrocytes. Sci Rep 5:17887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serrano-Pozo A, Mielke ML, Gómez-Isla T, Betensky RA, Growdon JH, Frosch MP, Hyman BT (2011) Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol 179:1373–1384

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah A, Kumar A (2016) HIV-1 gp120-mediated mitochondrial dysfunction and HIV-associated neurological disorders. Neurotox Res 30:135–137

    Article  CAS  PubMed  Google Scholar 

  • van Sighem AI, Gras LA, Reiss P, Brinkman K, de Wolf F, study Anoc (2010) Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals. AIDS 24:1527–1535

    Article  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Soreq L, Rose J, Soreq E, Hardy J, Trabzuni D, Cookson MR, Smith C, Ryten M, Patani R, Ule J, Consortium UBE, Consortium NABE (2017) Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep 18:557–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza DG, Bellaver B, Raupp GS, Souza DO, Quincozes-Santos A (2015) Astrocytes from adult Wistar rats aged in vitro show changes in glial functions. Neurochem Int 90:93–97

    Article  CAS  PubMed  Google Scholar 

  • Stafstrom CE, Rho JM (2012) The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 3:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevens PR, Gawryluk JW, Hui L, Chen X, Geiger JD (2014) Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury. Curr HIV Res 12:378–387

    Article  CAS  PubMed  Google Scholar 

  • Teodorof-Diedrich C, Spector SA (2018) Human immunodeficiency virus type 1 gp120 and Tat induce mitochondrial fragmentation and incomplete mitophagy in human neurons. J Virol 92:e00993-18

  • Terao A, Apte-Deshpande A, Dousman L, Morairty S, Eynon BP, Kilduff TS, Freund YR (2002) Immune response gene expression increases in the aging murine hippocampus. J Neuroimmunol 132:99–112

    Article  CAS  PubMed  Google Scholar 

  • Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367:188–193

    Article  CAS  PubMed  Google Scholar 

  • Towgood KJ, Pitkanen M, Kulasegaram R, Fradera A, Soni S, Sibtain N, Reed LJ, Bradbeer C, Barker GJ, Dunn JT, Zelaya F, Kopelman MD (2013) Regional cerebral blood flow and FDG uptake in asymptomatic HIV-1 men. Hum Brain Mapp 34:2484–2493

    Article  PubMed  Google Scholar 

  • Tyor WR, Power C, Gendelman HE, Markham RB (1993) A model of human immunodeficiency virus encephalitis in scid mice. Proc Natl Acad Sci U S A 90:8658–8662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhaeghen P, Cerella J (2002) Aging, executive control, and attention: a review of meta-analyses. Neurosci Biobehav Rev 26:849–857

    Article  PubMed  Google Scholar 

  • Villeneuve LM, Purnell PR, Stauch KL, Callen SE, Buch SJ, Fox HS (2016) HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution. J Neuro-Oncol 22:564–574

    CAS  Google Scholar 

  • Vitkovic L, da Cunha A (1995) Role for astrocytosis in HIV-1-associated dementia. Curr Top Microbiol Immunol 202:105–116

    CAS  PubMed  Google Scholar 

  • Wang Y, Santerre M, Tempera I, Martin K, Mukerjee R, Sawaya BE (2017) HIV-1 Vpr disrupts mitochondria axonal transport and accelerates neuronal aging. Neuropharmacology 117:364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber M, Wu T, Hanson JE et al (2015) Cognitive deficits, changes in synaptic function, and brain pathology in a mouse model of normal aging (1,2,3). eNeuro 2(5):ENEURO.0047-15

  • Yamazaki D, Horiuchi J, Ueno K, Ueno T, Saeki S, Matsuno M, Naganos S, Miyashita T, Hirano Y, Nishikawa H, Taoka M, Yamauchi Y, Isobe T, Honda Y, Kodama T, Masuda T, Saitoe M (2014) Glial dysfunction causes age-related memory impairment in Drosophila. Neuron 84:753–763

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yao H, Lu Y, Wang C, Buch S (2010) Cocaine potentiates astrocyte toxicity mediated by human immunodeficiency virus (HIV-1) protein gp120. PLoS One 5:e13427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Yao H, Chen X, Cai Y, Callen S, Buch S (2016) Role of sigma receptor in cocaine-mediated induction of glial fibrillary acidic protein: implications for HAND. Mol Neurobiol 53:1329–1342

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Rettberg JR, Klosinski LP, Cadenas E, Brinton RD (2011) Shift in brain metabolism in late onset Alzheimer’s disease: implications for biomarkers and therapeutic interventions. Mol Asp Med 32:247–257

    Article  CAS  Google Scholar 

  • Yao Y, Huang JZ, Chen Y, Hu HJ, Tang X, Li X (2018) Effects and mechanism of amyloid β1-42 on mitochondria in astrocytes. Mol Med Rep 17:6997–7004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh TH, Lee DY, Gianino SM, Gutmann DH (2009) Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)-regulated glial proliferation. Glia 57:1239–1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Goldsmith SK, Morgan TE, Stone DJ, Finch CE (1996) Transcription supports age-related increases of GFAP gene expression in the male rat brain. Neurosci Lett 215:107–110

    Article  CAS  PubMed  Google Scholar 

  • Young AC, Yiannoutsos CT, Hegde M, Lee E, Peterson J, Walter R, Price RW, Meyerhoff DJ, Spudich S (2014) Cerebral metabolite changes prior to and after antiretroviral therapy in primary HIV infection. Neurology 83:1592–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wu J, Liu H (2013) Age- and gender-related metabonomic alterations in striatum and cerebellar cortex in rats. Brain Res 1507:28–34

    Article  CAS  PubMed  Google Scholar 

  • Zhou BY, Liu Y, Kim B, Xiao Y, He JJ (2004) Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Mol Cell Neurosci 27:296–305

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Diefenbach E, Crossett B, Tran SL, Ng T, Rizos H, Rua R, Wang B, Kapur A, Gandhi K, Brew BJ, Saksena NK (2010) First evidence of overlaps between HIV-associated dementia (HAD) and non-viral neurodegenerative diseases: proteomic analysis of the frontal cortex from HIV+ patients with and without dementia. Mol Neurodegener 5:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH P01 DA037830 to Kamel Khalili and Dianne Langford, NIH R01 MH107340 to Dianne Langford, NIH K99/R00 HL138268 to Santhanam Shanmughapriya, the Comprehensive NeuroAIDS Center to Kamel Khalili (NIH P30 MH09217), and Bianca Cotto was supported by T32MH079785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianne Langford.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotto, B., Natarajaseenivasan, K. & Langford, D. Astrocyte activation and altered metabolism in normal aging, age-related CNS diseases, and HAND. J. Neurovirol. 25, 722–733 (2019). https://doi.org/10.1007/s13365-019-00721-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-019-00721-6

Keywords

Navigation