Skip to main content

Advertisement

Log in

Development and characterization of a human microglia cell model of HIV-1 infection

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Microglia cells are the major reservoir of HIV-1 (HIV) within the CNS. However, current models using transformed cell lines are not representative of primary microglia and fetal brain samples for isolation of primary human microglia (HMG) are increasingly difficult to obtain. Here, we describe a monocyte-derived microglia (MMG) cell model of HIV infection that recapitulates infection of primary HMG. CD14+ cells isolated from healthy donors were cultured with M-CSF, beta-nerve growth factor, GM-CSF, and CCL2, and compared to HMG. MMG and HMG cells were infected with HIV and viral replication was detected by p24 antigen. Both MMG and HMG cells were found to acquire spindle shape with few branched or unbranched processes at their ends during the second week in culture and both were found to be CD11b+/ CD11c+/ CD14+/ CD45+/ CD195+/ HLADRlow/ CD86low/ CD80+. Whereas hT-Hμglia and HMC3 transformed cell lines are deficient in human microglia signature genes (C1Q, GAS6, GPR34, MERTK, PROS1, and P2RY12), MMG cells expressed all of these genes. Additionally, MMG expressed all the microglia signature miRNA (miR-99a, miR125b-5p, and miR-342-3p). Both MMG and HMG produced ROS and phagocytosed labeled zymosan particles upon PMA stimulation. MMG and HMG infected with HIV produced equivalent levels of HIV p24 antigen in culture supernatants for 30 days post-infection. Thus, we have developed and characterized a microglia cell model of HIV infection derived from primary monocytes that recapitulates the phenotypic and molecular properties of HMG, is superior to transformed cell lines, and has similar HIV replication kinetics to HMG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, McGeer PL (1990) Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 30:81–93

    Article  CAS  PubMed  Google Scholar 

  • Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ (1996) Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10:573–585

    Article  CAS  PubMed  Google Scholar 

  • Bassett T, Bach P, Chan HM (2012) Effects of methylmercury on the secretion of pro-inflammatory cytokines from primary microglial cells and astrocytes. Neurotoxicology 33:229–234

    Article  CAS  PubMed  Google Scholar 

  • Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143

    Article  CAS  PubMed  Google Scholar 

  • Campbell GR, Spector SA (2008) CCL2 increases X4-tropic HIV-1 entry into resting CD4+ T cells. J Biol Chem 283:30745–30753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53:344–354

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Yang P, Kijlstra A (2002) Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 10:27–39

    Article  PubMed  Google Scholar 

  • Clements JE, Zink MC (1996) Molecular biology and pathogenesis of animal lentivirus infections. Clin Microbiol Rev 9:100–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosenza MA, Zhao ML, Si Q, Lee SC (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 12:442–455

    Article  CAS  PubMed  Google Scholar 

  • D’Souza S, Alinauskas K, McCrea E, Goodyer C, Antel JP (1995) Differential susceptibility of human CNS-derived cell populations to TNF-dependent and independent immune-mediated injury. J Neurosci 15:7293–7300

    PubMed  Google Scholar 

  • Davoust N, Vuaillat C, Androdias G, Nataf S (2008) From bone marrow to microglia: barriers and avenues. Trends Immunol 29:227–234

    Article  CAS  PubMed  Google Scholar 

  • Etemad S, Zamin RM, Ruitenberg MJ, Filgueira L (2012) A novel in vitro human microglia model: characterization of human monocyte-derived microglia. J Neurosci Methods 209:79–89

    Article  CAS  PubMed  Google Scholar 

  • Fassbender K, Walter S, Kuhl S, Landmann R, Ishii K, Bertsch T, Stalder AK, Muehlhauser F, Liu Y, Ulmer AJ, Rivest S, Lentschat A, Gulbins E, Jucker M, Staufenbiel M, Brechtel K, Walter J, Multhaup G, Penke B, Adachi Y, Hartmann T, Beyreuther K (2004) The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J 18:203–205

    CAS  PubMed  Google Scholar 

  • Fischer-Smith T, Croul S, Adeniyi A, Rybicka K, Morgello S, Khalili K, Rappaport J (2004) Macrophage/microglial accumulation and proliferating cell nuclear antigen expression in the central nervous system in human immunodeficiency virus encephalopathy. Am J Pathol 164:2089–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabuzda DH, Ho DD, de la Monte SM, Hirsch MS, Rota TR, Sobel RA (1986) Immunohistochemical identification of HTLV-III antigen in brains of patients with AIDS. Ann Neurol 20:289–295

    Article  CAS  PubMed  Google Scholar 

  • Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219

    Article  CAS  PubMed  Google Scholar 

  • Gendelman HE, Orenstein JM, Martin MA, Ferrua C, Mitra R, Phipps T, Wahl LA, Lane HC, Fauci AS, Burke DS, et al. (1988) Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med 167:1428–1441

    Article  CAS  PubMed  Google Scholar 

  • Genis P, Jett M, Bernton EW, Boyle T, Gelbard HA, Dzenko K, Keane RW, Resnick L, Mizrachi Y, Volsky DJ, et al. (1992) Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med 176:1703–1718

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giulian D, Vaca K, Noonan CA (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250:1593–1596

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81

    Article  CAS  PubMed  Google Scholar 

  • Haase AT (1986) Pathogenesis of lentivirus infections. Nature 322:130–136

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Busciglio J, Yang X, Hofmann W, Newman W, Mackay CR, Sodroski J, Gabuzda D (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385:645–649

    Article  CAS  PubMed  Google Scholar 

  • Hinojosa AE, Garcia-Bueno B, Leza JC, Madrigal JL (2011) CCL2/MCP-1 modulation of microglial activation and proliferation. J Neuroinflammation 8:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinze A, Stolzing A (2011) Differentiation of mouse bone marrow derived stem cells toward microglia-like cells. BMC Cell Biol 12:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell OW, Rundle JL, Garg A, Komada M, Brophy PJ, Reynolds R (2010) Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J Neuropathol Exp Neurol 69:1017–1033

    Article  PubMed  PubMed Central  Google Scholar 

  • Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Kohsaka S (2002) Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 40:164–174

    Article  PubMed  Google Scholar 

  • Ioannidis JP, Reichlin S, Skolnik PR (1995) Long-term productive human immunodeficiency virus-1 infection in human infant microglia. Am J Pathol 147:1200–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9

    Article  CAS  PubMed  Google Scholar 

  • Janabi N, Peudenier S, Heron B, Ng KH, Tardieu M (1995) Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen. Neurosci Lett 195:105–108

    Article  CAS  PubMed  Google Scholar 

  • Japour AJ, Mayers DL, Johnson VA, Kuritzkes DR, Beckett LA, Arduino JM, Lane J, Black RJ, Reichelderfer PS, D’Aquila RT, et al. (1993) Standardized peripheral blood mononuclear cell culture assay for determination of drug susceptibilities of clinical human immunodeficiency virus type 1 isolates. The RV-43 Study Group, the AIDS Clinical Trials Group Virology Committee Resistance Working Group. Antimicrob Agents Chemother 37:1095–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  • Lackner AA, Smith MO, Munn RJ, Martfeld DJ, Gardner MB, Marx PA, Dandekar S (1991) Localization of simian immunodeficiency virus in the central nervous system of rhesus monkeys. Am J Pathol 139:609–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert C, Desbarats J, Arbour N, Hall JA, Olivier A, Bar-Or A, Antel JP (2008) Dendritic cell differentiation signals induce anti-inflammatory properties in human adult microglia. J Immunol 181:8288–8297

    Article  CAS  PubMed  Google Scholar 

  • Lane JH, Tarantal AF, Pauley D, Marthas M, Miller CJ, Lackner AA (1996) Localization of simian immunodeficiency virus nucleic acid and antigen in brains of fetal macaques inoculated in utero. Am J Pathol 149:1097–1104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavi E, Strizki JM, Ulrich AM, Zhang W, Fu L, Wang Q, O’Connor M, Hoxie JA, Gonzalez-Scarano F (1997) CXCR-4 (Fusin), a co-receptor for the type 1 human immunodeficiency virus (HIV-1), is expressed in the human brain in a variety of cell types, including microglia and neurons. Am J Pathol 151:1035–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177:2549–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TI, Yang CS, Fang KM, Tzeng SF (2009) Role of ciliary neurotrophic factor in microglial phagocytosis. Neurochem Res 34:109–117

    Article  CAS  PubMed  Google Scholar 

  • Leone C, Le Pavec G, Meme W, Porcheray F, Samah B, Dormont D, Gras G (2006) Characterization of human monocyte-derived microglia-like cells. Glia 54:183–192

    Article  PubMed  Google Scholar 

  • Ling EA, Penney D, Leblond CP (1980) Use of carbon labeling to demonstrate the role of blood monocytes as precursors of the ‘ameboid cells’ present in the corpus callosum of postnatal rats. J Comp Neurol 193:631–657

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA, Gendelman HE (1995) Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med 332:934–940

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Chen T, Mandelin J, Ceponis A, Miller NE, Hukkanen M, Ma GF, Konttinen YT (2003) Regulation of macrophage activation. Cell Mol Life Sci 60:2334–2346

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG (1993) Microglia in degenerative neurological disease. Glia 7:84–92

    Article  CAS  PubMed  Google Scholar 

  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553

    Article  CAS  PubMed  Google Scholar 

  • Mott RT, Ait-Ghezala G, Town T, Mori T, Vendrame M, Zeng J, Ehrhart J, Mullan M, Tan J (2004) Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia 46:369–379

    Article  PubMed  Google Scholar 

  • Napoli I, Neumann H (2009) Microglial clearance function in health and disease. Neuroscience 158:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295

    Article  CAS  PubMed  Google Scholar 

  • Noto D, Takahashi K, Miyake S, Yamada M (2010) In vitro differentiation of lineage-negative bone marrow cells into microglia-like cells. Eur J Neurosci 31:1155–1163

    Article  PubMed  Google Scholar 

  • Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S (2000) Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci 113(Pt 17):3073–3084

    CAS  PubMed  Google Scholar 

  • Ohsawa K, Imai Y, Sasaki Y, Kohsaka S (2004) Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem 88:844–856

    Article  CAS  PubMed  Google Scholar 

  • Orenstein JM, Schulof RS, Simon GL (1984) Ultrastructural markers in acquired immune deficiency syndrome. Arch Pathol Lab Med 108:857–859

    CAS  PubMed  Google Scholar 

  • Peluso R, Haase A, Stowring L, Edwards M, Ventura P (1985) A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology 147:231–236

    Article  CAS  PubMed  Google Scholar 

  • Politis M, Pavese N, Tai YF, Kiferle L, Mason SL, Brooks DJ, Tabrizi SJ, Barker RA, Piccini P (2011) Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp 32:258–270

    Article  PubMed  Google Scholar 

  • Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 29:11982–11992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaie P, Dean A, Male D, Ulfig N (2005) Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex 15:938–949

    Article  PubMed  Google Scholar 

  • Rotshenker S (2009) The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. J Mol Neurosci 39:99–103

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Sharer LR, Epstein LG, Michaels J, Mintz M, Louder M, Golding K, Cvetkovich TA, Blumberg BM (1994) Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology 44:474–481

    Article  CAS  PubMed  Google Scholar 

  • Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V (1991) Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A 88:7438–7442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh JT, Albright AV, Sharron M, Gartner S, Strizki J, Doms RW, Gonzalez-Scarano F (1998) Chemokine receptor utilization by human immunodeficiency virus type 1 isolates that replicate in microglia. J Virol 72:4243–4249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers J, Parwaresch R, Wottge HU (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia 12:245–258

    Article  CAS  PubMed  Google Scholar 

  • Stansley B, Post J, Hensley K (2012) A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflammation 9:115

  • Streit WJ (1996) The role of microglia in brain injury. Neurotoxicology 17:671–678

    CAS  PubMed  Google Scholar 

  • Streit WJ (2001) Microglia and macrophages in the developing CNS. Neurotoxicology 22:619–624

    Article  CAS  PubMed  Google Scholar 

  • Strizki JM, Albright AV, Sheng H, O’Connor M, Perrin L, Gonzalez-Scarano F (1996) Infection of primary human microglia and monocyte-derived macrophages with human immunodeficiency virus type 1 isolates: evidence of differential tropism. J Virol 70:7654–7662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB (1986) Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 83:7089–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams K, Bar-Or A, Ulvestad E, Olivier A, Antel JP, Yong VW (1992) Biology of adult human microglia in culture: comparisons with peripheral blood monocytes and astrocytes. J Neuropathol Exp Neurol 51:538–549

    Article  CAS  PubMed  Google Scholar 

  • Williams KC, Hickey WF (2002) Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25:537–562

    Article  CAS  PubMed  Google Scholar 

  • Wires ES, Alvarez D, Dobrowolski C, Wang Y, Morales M, Karn J, Harvey BK (2012) Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells. J Neurovirol 18:400–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported in part by 1R01 NS077874 and 1R01 NS077874 from the National Institute of Neurological Disorders and Stroke and the International Maternal Perinatal Adolescent AIDS Clinical Trials (IMPAACT) Network. Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials Group (IMPAACT) was provided by NIAID (U01 AI068632) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD; contract number N01-DK-9-001/HHSN267200800001C). We thank Terrance Robinson, Rodney Trout, and Byungho Wang for technical assistance and Gang Zhang for isolation and culture of primary human microglia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Spector.

Ethics declarations

HIV seronegative donors were enrolled for venous blood draw using a protocol that was reviewed and approved by the Human Research Protection Program of the University of California, San Diego, in accordance with the requirements of the Code of Federal Regulations on the Protection of Human subjects (45 CFR 46 and 21 CFR 50 and 56). Written informed consent was obtained from all blood donors prior to their participation. Normal human fetal brain tissue was obtained from the University of Washington and approved by the Human Research Protection Program of the University of California, San Diego (Project # 150172XX), in accordance with the requirements of the Code of Federal Regulations on the Protection of Human subjects (45 CFR§46.102 (f)).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOT 31 kb)

ESM 2

Fig. S1 (TIFF 17293 kb)

High Resolution Image (GIF 79 kb)

ESM 3

Fig. S2 (TIFF 10685 kb)

High Resolution Image (GIF 49 kb)

ESM 4

Fig. S3 (TIFF 6465 kb)

High Resolution Image (GIF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, P., Spector, S.A. Development and characterization of a human microglia cell model of HIV-1 infection. J. Neurovirol. 23, 33–46 (2017). https://doi.org/10.1007/s13365-016-0472-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-016-0472-1

Keywords

Navigation