Skip to main content

Advertisement

Log in

The meningeal lymphatic system: a route for HIV brain migration?

  • Mini-Review
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4+ T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas W, Tariq M, Iqbal M, Kumar A, Herbein G (2015) Eradication of HIV-1 from the macrophage reservoir: an uncertain goal? Viruses 7(4):1578–1598. doi:10.3390/v7041578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexaki A, Liu Y, Wigdahl B (2008) Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res 6(5):388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antinori A, Giancola ML, Grisetti S, Soldani F, Alba L, Liuzzi G, Amendola A, Capobianchi M, Tozzi V, Perno CF (2002) Factors influencing virological response to antiretroviral drugs in cerebrospinal fluid of advanced HIV-1-infected patients. AIDS 16(14):1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799. doi:10.1212/01.WNL.0000287431.88658.8b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999. doi:10.1084/jem.20142290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204(10):2349–2362. doi:10.1084/jem.20062596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdo TH, Lackner A, Williams KC (2013) Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev 254(1):102–113. doi:10.1111/imr.12068

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell JH, Hearps AC, Martin GE, Williams KC, Crowe SM (2014) The importance of monocytes and macrophages in HIV pathogenesis, treatment, and cure. AIDS. doi:10.1097/QAD.0000000000000408

    Google Scholar 

  • Cespedes MS, Aberg JA (2006) Neuropsychiatric complications of antiretroviral therapy. Drug Saf 29(10):865–874

    Article  CAS  PubMed  Google Scholar 

  • Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51. doi:10.1186/1742-4690-6-51

    Article  PubMed  PubMed Central  Google Scholar 

  • Couturier J, Suliburk JW, Brown JM, Luke DJ, Agarwal N, Yu X, Nguyen C, Iyer D, Kozinetz CA, Overbeek PA, Metzker ML, Balasubramanyam A, Lewis DE (2015) Human adipose tissue as a reservoir for memory CD4+ T cells and HIV. AIDS 29(6):667–674. doi:10.1097/QAD.0000000000000599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe S, Zhu T, Muller WA (2003) The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J Leukoc Biol 74(5):635–641. doi:10.1189/jlb.0503204

    Article  CAS  PubMed  Google Scholar 

  • Duncan CJ, Williams JP, Schiffner T, Gartner K, Ochsenbauer C, Kappes J, Russell RA, Frater J, Sattentau QJ (2014) High-multiplicity HIV-1 infection and neutralizing antibody evasion mediated by the macrophage-T cell virological synapse. J Virol 88(4):2025–2034. doi:10.1128/JVI.03245-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggers C, Hertogs K, Sturenburg HJ, van Lunzen J, Stellbrink HJ (2003) Delayed central nervous system virus suppression during highly active antiretroviral therapy is associated with HIV encephalopathy, but not with viral drug resistance or poor central nervous system drug penetration. AIDS 17(13):1897–1906. doi:10.1097/01.aids.0000076273.54156.8f

    Article  PubMed  Google Scholar 

  • Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41(1):21–35. doi:10.1016/j.immuni.2014.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L’Heureux D, Regulier EG, Richardson MW, Amini S, Morgello S, Khalili K, Rappaport J (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol 7(6):528–541. doi:10.1080/135502801753248114

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Smith T, Bell C, Croul S, Lewis M, Rappaport J (2008) Monocyte/macrophage trafficking in acquired immunodeficiency syndrome encephalitis: lessons from human and nonhuman primate studies. J Neurovirol 14(4):318–326. doi:10.1080/13550280802132857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavegnano C, Schinazi RF (2009) Antiretroviral therapy in macrophages: implication for HIV eradication. Antivir Chem Chemother 20(2):63–78. doi:10.3851/IMP1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haggerty S, Stevenson M (1991) Predominance of distinct viral genotypes in brain and lymph node compartments of HIV-1-infected individuals. Viral Immunol 4(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar E, Alger J, Singer E, Campbell T, Yiannoutsos C, Cohen R, Navia B (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25(5):625–633. doi:10.1097/QAD.0b013e3283427da7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75(23):2087–2096. doi:10.1212/WNL.0b013e318200d727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi T, Brown CR, Endo Y, Buckler-White A, Plishka R, Bischofberger N, Hirsch V, Martin MA (2001) Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): implications for HIV-1 infections of humans. Proc Natl Acad Sci U S A 98(2):658–663. doi:10.1073/pnas.021551798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamei M, Carman CV (2010) New observations on the trafficking and diapedesis of monocytes. Curr Opin Hematol 17(1):43–52. doi:10.1097/MOH.0b013e3283333949

    Article  PubMed  Google Scholar 

  • Kataru RP, Lee YG, Koh GY (2014) Interactions of immune cells and lymphatic vessels. Adv Anat Embryol Cell Biol 214:107–118. doi:10.1007/978-3-7091-1646-3_9

    Article  PubMed  Google Scholar 

  • Kedzierska K, Crowe SM (2002) The role of monocytes and macrophages in the pathogenesis of HIV-1 infection. Curr Med Chem 9(21):1893–1903

    Article  CAS  PubMed  Google Scholar 

  • Kim WK, Corey S, Alvarez X, Williams K (2003) Monocyte/macrophage traffic in HIV and SIV encephalitis. J Leukoc Biol 74(5):650–656. doi:10.1189/jlb.0503207

    Article  CAS  PubMed  Google Scholar 

  • Korber BT, Kunstman KJ, Patterson BK, Furtado M, McEvilly MM, Levy R, Wolinsky SM (1994) Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J Virol 68(11):7467–7481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuan EL, Ivanov S, Bridenbaugh EA, Victora G, Wang W, Childs EW, Platt AM, Jakubzick CV, Mason RJ, Gashev AA, Nussenzweig M, Swartz MA, Dustin ML, Zawieja DC, Randolph GJ (2015) Collecting lymphatic vessel permeability facilitates adipose tissue inflammation and distribution of antigen to lymph node-homing adipose tissue dendritic cells. J Immunol 194(11):5200–5210. doi:10.4049/jimmunol.1500221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers SL, Salemi M, Galligan DC, Morris A, Gray R, Fogel G, Zhao L, McGrath MS (2010) Human immunodeficiency virus-1 evolutionary patterns associated with pathogenic processes in the brain. J Neurovirol 16(3):230–241. doi:10.3109/13550281003735709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers SL, Gray RR, Salemi M, Huysentruyt LC, McGrath MS (2011a) HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues. Infect Genet Evol : J Mol Epidemiol Evol Genet Infect Dis 11(1):31–37. doi:10.1016/j.meegid.2010.10.016

    Article  Google Scholar 

  • Lamers SL, Poon AF, McGrath MS (2011b) HIV-1 nef protein structures associated with brain infection and dementia pathogenesis. PLoS One 6(2), e16659. doi:10.1371/journal.pone.0016659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers SL, Fogel GB, Singer EJ, Salemi M, Nolan DJ, Huysentruyt LC, McGrath MS (2012) HIV-1 Nef in macrophage-mediated disease pathogenesis. Int Rev Immunol 31(6):432–450. doi:10.3109/08830185.2012.737073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Douce V, Herbein G, Rohr O, Schwartz C (2010) Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology 7:32. doi:10.1186/1742-4690-7-32

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tang XP, McArthur JC, Scott J, Gartner S (2000) Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J Neurovirol 6(Suppl 1):S70–81

    CAS  PubMed  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature. doi:10.1038/nature14432

    PubMed  PubMed Central  Google Scholar 

  • McGrath MS (1996) T-cells and macrophages in HIV disease. Clin Rev Allergy Immunol 14(4):359–366. doi:10.1007/BF02771752

    PubMed  Google Scholar 

  • Moir S, Fauci AS (2010) Nef, macrophages and B cells: a highway for evasion. Immunol Cell Biol 88(1):1–2. doi:10.1038/icb.2009.82

    Article  CAS  PubMed  Google Scholar 

  • Pierson T, McArthur J, Siliciano RF (2000) Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol 18:665–708. doi:10.1146/annurev.immunol.18.1.665

    Article  CAS  PubMed  Google Scholar 

  • Rothenberger MK, Keele BF, Wietgrefe SW, Fletcher CV, Beilman GJ, Chipman JG, Khoruts A, Estes JD, Anderson J, Callisto SP, Schmidt TE, Thorkelson A, Reilly C, Perkey K, Reimann TG, Utay NS, Nganou Makamdop K, Stevenson M, Douek DC, Haase AT, Schacker TW (2015) Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. Proc Natl Acad Sci U S A 112(10):E1126–1134. doi:10.1073/pnas.1414926112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salemi M, Lamers SL, Yu S, de Oliveira T, Fitch WM, McGrath MS (2005) Phylodynamic analysis of human immunodeficiency virus type 1 in distinct brain compartments provides a model for the neuropathogenesis of AIDS. J Virol 79(17):11343–11352. doi:10.1128/JVI.79.17.11343-11352.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salemi M, Burkhardt BR, Gray RR, Ghaffari G, Sleasman JW, Goodenow MM (2007) Phylodynamics of HIV-1 in lymphoid and non-lymphoid tissues reveals a central role for the thymus in emergence of CXCR4-using quasispecies. PLoS One 2(9), e950. doi:10.1371/journal.pone.0000950

    Article  PubMed  PubMed Central  Google Scholar 

  • Shikuma CM, Gangcuangco LM, Killebrew DA, Libutti DE, Chow DC, Nakamoto BK, Liang CY, Milne CI, Ndhlovu LC, Barbour JD, Shiramizu BT, Gerschenson M (2014) The role of HIV and monocytes/macrophages in adipose tissue biology. J Acquir Immune Defic Syndr 65(2):151–159. doi:10.1097/01.qai.0000435599.27727.6c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strickland SL, Rife BD, Lamers SL, Nolan DJ, Veras NM, Prosperi MC, Burdo TH, Autissier P, Nowlin B, Goodenow MM, Suchard MA, Williams KC, Salemi M (2014) Spatiotemporal dynamics of SIV brain infection in CD8+ lymphocyte-depleted rhesus macaques with NeuroAIDS. J Gen Virol. doi:10.1099/vir.0.070318-0

    PubMed  PubMed Central  Google Scholar 

  • Svicher V, Ceccherini-Silberstein F, Antinori A, Aquaro S, Perno CF (2014) Understanding HIV compartments and reservoirs. Curr HIV/AIDS Rep 11(2):186–194. doi:10.1007/s11904-014-0207-y

    Article  PubMed  Google Scholar 

  • Swingler S, Mann AM, Zhou J, Swingler C, Stevenson M (2007) Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein. PLoS Pathog 3(9):1281–1290. doi:10.1371/journal.ppat.0030134

    Article  CAS  PubMed  Google Scholar 

  • Teleshova N, Frank I, Pope M (2003) Immunodeficiency virus exploitation of dendritic cells in the early steps of infection. J Leukoc Biol 74(5):683–690. doi:10.1189/jlb.0403178

    Article  CAS  PubMed  Google Scholar 

  • van’t Wout AB, Ran LJ, Kuiken CL, Kootstra NA, Pals ST, Schuitemaker H (1998) Analysis of the temporal relationship between human immunodeficiency virus type 1 quasispecies in sequential blood samples and various organs obtained at autopsy. J Virol 72(1):488–496

    Google Scholar 

  • Verollet C, Souriant S, Bonnaud E, Jolicoeur P, Raynaud-Messina B, Kinnaer C, Fourquaux I, Imle A, Benichou S, Fackler OT, Poincloux R, Maridonneau-Parini I (2015) HIV-1 reprograms the migration of macrophages. Blood 125(10):1611–1622. doi:10.1182/blood-2014-08-596775

    Article  CAS  PubMed  Google Scholar 

  • Wang TH, Donaldson YK, Brettle RP, Bell JE, Simmonds P (2001) Identification of shared populations of human immunodeficiency virus type 1 infecting microglia and tissue macrophages outside the central nervous system. J Virol 75(23):11686–11699. doi:10.1128/JVI.75.23.11686-11699.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams K, Burdo TH (2012) Monocyte mobilization, activation markers, and unique macrophage populations in the brain: observations from SIV infected monkeys are informative with regard to pathogenic mechanisms of HIV infection in humans. J Neuroimmune Pharm 7(2):363–371. doi:10.1007/s11481-011-9330-3

    Article  Google Scholar 

  • Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193(8):905–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DW, Eugenin EA, Calderon TM, Berman JW (2012) Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol 91(3):401–415. doi:10.1189/jlb.0811394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong JK, Ignacio CC, Torriani F, Havlir D, Fitch NJ, Richman DD (1997) In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. J Virol 71(3):2059–2071

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

MM, EM, CAS are funded by the National Cancer Institutes grant #CA181255. SLL, RR, MM are funded by the National Institutes of Mental Health grant #MH100984. SLL, DJN, MS are funded by the National Institutes of Neurological Disorders and Stroke grant #NS063897. LCH is funded by the National Institutes of Mental Health grant #MH104141

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna L. Lamers.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamers, S.L., Rose, R., Ndhlovu, L.C. et al. The meningeal lymphatic system: a route for HIV brain migration?. J. Neurovirol. 22, 275–281 (2016). https://doi.org/10.1007/s13365-015-0399-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-015-0399-y

Keywords

Navigation