Skip to main content

Advertisement

Log in

Methamphetamine toxicity and its implications during HIV-1 infection

  • Review
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Over the past two decades methamphetamine (MA) abuse has seen a dramatic increase. The abuse of MA is particularly high in groups that are at higher risk for HIV-1 infection, especially men who have sex with men (MSM). This review is focused on MA toxicity in the CNS as well as in the periphery. In the CNS, MA toxicity is comprised of numerous effects, including, but not limited to, oxidative stress produced by dysregulation of the dopaminergic system, hyperthermia, apoptosis, and neuroinflammation. Multiple lines of evidence demonstrate that these effects exacerbate the neurodegenerative damage caused by CNS infection of HIV perhaps because both MA and HIV target the frontostriatal regions of the brain. MA has also been demonstrated to increase viral load in the CNS of SIV-infected macaques. Using transgenic animal models, as well as cultured cells, the HIV proteins Tat and gp120 have been demonstrated to have neurotoxic properties that are aggravated by MA. In addition, MA has been shown to exhibit detrimental effects on the blood–brain barrier (BBB) that have the potential to increase the probability of CNS infection by HIV. Although the effects of MA in the periphery have not been as extensively studied as have the effects on the CNS, recent reports demonstrate the potential effects of MA on HIV infection in the periphery including increased expression of HIV co-receptors and increased expression of inflammatory cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acikgoz O, Gonenc S, Kayatekin BM, Uysal N, Pekcetin C, Semin I, Gure A (1998) Methamphetamine causes lipid peroxidation and an increase in superoxide dismutase activity in the rat striatum. Brain Res 813:200–202

    Article  PubMed  CAS  Google Scholar 

  • Amenta F, Bronzetti E, Felici L, Ricci A, Tayebati SK (1999) Dopamine D2-like receptors on human peripheral blood lymphocytes: a radioligand binding assay and immunocytochemical study. J Auton Pharmacol 19:151–159

    Article  PubMed  CAS  Google Scholar 

  • Angulo JA, Angulo N, Yu J (2004) Antagonists of the neurokinin-1 or dopamine D1 receptors confer protection from methamphetamine on dopamine terminals of the mouse striatum. Ann N Y Acad Sci 1025:171–180

    Article  PubMed  CAS  Google Scholar 

  • Anlauf M, Schafer MK, Schwark T, von Wurmb-Schwark N, Brand V, Sipos B, Horny HP, Parwaresch R, Hartschuh W, Eiden LE, Kloppel G, Weihe E (2006) Vesicular monoamine transporter 2 (VMAT2) expression in hematopoietic cells and in patients with systemic mastocytosis. J Histochem Cytochem 54:201–213

    Article  PubMed  CAS  Google Scholar 

  • Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Zhang X, Manda KR, Banks WA, Ercal N (2010) HIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: potential role of the thiol antioxidant N-acetylcysteine amide. Free Radic Biol Med 48:1388–1398

    Article  PubMed  CAS  Google Scholar 

  • Berger JR, Kumar M, Kumar A, Fernandez JB, Levin B (1994) Cerebrospinal fluid dopamine in HIV-1 infection. AIDS 8:67–71

    Article  PubMed  CAS  Google Scholar 

  • Brown PL, Kiyatkin EA (2005) Fatal intra-brain heat accumulation induced by meth-amphetamine at normothermic conditions in rats. Int J Neuroprotect Neuroregeneration 1:86–90

    CAS  Google Scholar 

  • Brown JM, Riddle EL, Sandoval V, Weston RK, Hanson JE, Crosby MJ, Ugarte YV, Gibb JW, Hanson GR, Fleckenstein AE (2002) A single methamphetamine administration rapidly decreases vesicular dopamine uptake. J Pharmacol Exp Ther 302:497–501

    Article  PubMed  CAS  Google Scholar 

  • Brown PL, Wise RA, Kiyatkin EA (2003) Brain hyperthermia is induced by methamphetamine and exacerbated by social interaction. J Neurosci 23:3924–3929

    PubMed  CAS  Google Scholar 

  • Buchacz K, McFarland W, Kellogg TA, Loeb L, Holmberg SD, Dilley J, Klausner JD (2005) Amphetamine use is associated with increased HIV incidence among men who have sex with men in San Francisco. AIDS 19:1423–1424

    Article  PubMed  Google Scholar 

  • Cadet JL, Krasnova IN (2007) Interactions of HIV and methamphetamine: cellular and molecular mechanisms of toxicity potentiation. Neurotox Res 12:181–204

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Sheng P, Ali S, Rothman R, Carlson E, Epstein C (1994) Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J Neurochem 62:380–383

    Article  PubMed  CAS  Google Scholar 

  • Cass WA, Harned ME, Peters LE, Nath A, Maragos WF (2003) HIV-1 protein Tat potentiation of methamphetamine-induced decreases in evoked overflow of dopamine in the striatum of the rat. Brain Res 984:133–142

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Ernst T, Speck O, Grob CS (2005) Additive effects of HIV and chronic methamphetamine use on brain metabolite abnormalities. Am J Psychiatry 162:361–369

    Article  PubMed  Google Scholar 

  • Chen HM, Lee YC, Huang CL, Liu HK, Liao WC, Lai WL, Lin YR, Huang NK (2007) Methamphetamine downregulates peroxiredoxins in rat pheochromocytoma cells. Biochem Biophys Res Commun 354:96–101

    Article  PubMed  CAS  Google Scholar 

  • Chung YA, Peterson BS, Yoon SJ, Cho SN, Chai S, Jeong J, Kim DJ (2010) In vivo evidence for long-term CNS toxicity, associated with chronic binge use of methamphetamine. Drug Alcohol Depend 111:155–160

    Article  PubMed  Google Scholar 

  • Clifford DB (2008) HIV-associated neurocognitive disease continues in the antiretroviral era. Top HIV Med 16:94–98

    PubMed  Google Scholar 

  • Conant K, St Hillaire C, Anderson C, Galey D, Wang J, Nath A (2004) Human immunodeficiency virus type 1 Tat and methamphetamine affect the release and activation of matrix-degrading proteinases. J Neurovirol 10:21–28

    Article  PubMed  CAS  Google Scholar 

  • Cubells JF, Rayport S, Rajendran G, Sulzer D (1994) Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 14:2260–2271

    PubMed  CAS  Google Scholar 

  • Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Brain Res Rev 36:1–22

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt L, Mathers B, Guarinieri M, Panda S, Phillips B, Strathdee SA, Tyndall M, Wiessing L, Wodak A, Howard J (2010) Meth/amphetamine use and associated HIV: Implications for global policy and public health. Int J Drug Policy 21:347–358

    Article  PubMed  Google Scholar 

  • Dluzen DE, McDermott JL, Darvesh AS (2010) Relationships among gender, age, time, and temperature in methamphetamine-induced striatal dopaminergic neurotoxicity. Neuroscience 167:985–993

    Article  PubMed  CAS  Google Scholar 

  • Eyerman DJ, Yamamoto BK (2005) Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum. J Pharmacol Exp Ther 312:160–169

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein AE, Volz TJ, Hanson GR (2009) Psychostimulant-induced alterations in vesicular monoamine transporter-2 function: neurotoxic and therapeutic implications. Neuropharmacology 56(Suppl 1):133–138

    Article  PubMed  CAS  Google Scholar 

  • Flora G, Lee YW, Nath A, Maragos W, Hennig B, Toborek M (2002) Methamphetamine-induced TNF-alpha gene expression and activation of AP-1 in discrete regions of mouse brain: potential role of reactive oxygen intermediates and lipid peroxidation. Neuromolecular Med 2:71–85

    Article  PubMed  CAS  Google Scholar 

  • Flora G, Lee YW, Nath A, Hennig B, Maragos W, Toborek M (2003) Methamphetamine potentiates HIV-1 Tat protein-mediated activation of redox-sensitive pathways in discrete regions of the brain. Exp Neurol 179:60–70

    Article  PubMed  CAS  Google Scholar 

  • Frey K, Kilbourn M, Robinson T (1997) Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine. Eur J Pharmacol 334:273–279

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli F, Gainetdinov RR, Valenzano KJ, Caron MG (1998) Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J Neurosci 18:4861–4869

    PubMed  CAS  Google Scholar 

  • Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG (1999) Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci 19:2424–2431

    PubMed  CAS  Google Scholar 

  • Garcia de Yebenes J, Yebenes J, Mena MA (2000) Neurotrophic factors in neurodegenerative disorders: model of Parkinson’s disease. Neurotox Res 2:115–137

    Article  PubMed  CAS  Google Scholar 

  • Genc K, Genc S, Kizildag S, Sonmez U, Yilmaz O, Tugyan K, Ergur B, Sonmez A, Buldan Z (2003) Methamphetamine induces oligodendroglial cell death in vitro. Brain Res 982:125–130

    Article  PubMed  CAS  Google Scholar 

  • Gendelman HE, Meltzer MS (1989) Mononuclear phagocytes and the human immunodeficiency virus. Curr Opin Immunol 2:414–419

    Article  PubMed  Google Scholar 

  • Gibb JW, Kogan FJ (1979) Influence of dopamine synthesis on methamphetamine-induced changes in striatal and adrenal tyrosine hydroxylase activity. Naunyn Schmiedebergs Arch Pharmacol 310:185–187

    Article  PubMed  CAS  Google Scholar 

  • Glasner-Edwards S, Mooney LJ, Marinelli-Casey P, Hillhouse M, Ang A, Rawson RA (2010) Psychopathology in methamphetamine-dependent adults 3 years after treatment. Drug Alcohol Rev 29:12–20

    Article  PubMed  Google Scholar 

  • Glass JD, Wesselingh SL, Selnes OA, McArthur JC (1993) Clinical-neuropathologic correlation in HIV-associated dementia. Neurology 43:2230–2237

    PubMed  CAS  Google Scholar 

  • Gluck MR, Moy LY, Jayatilleke E, Hogan KA, Manzino L, Sonsalla PK (2001) Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. J Neurochem 79:152–160

    Article  PubMed  CAS  Google Scholar 

  • Goncalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, Malva JO, Macedo TR, Silva AP (2008) Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain. Ann N Y Acad Sci 1139:103–111

    Article  PubMed  CAS  Google Scholar 

  • Gonzales R, Ang A, Marinelli-Casey P, Glik DC, Iguchi MY, Rawson RA (2009) Health-related quality of life trajectories of methamphetamine-dependent individuals as a function of treatment completion and continued care over a 1-year period. J Subst Abuse Treat 37:353–361

    Article  PubMed  Google Scholar 

  • Gonzales R, Mooney L, Rawson RA (2010) The methamphetamine problem in the United States. Annu Rev Public Health 31:385–398

    Article  PubMed  Google Scholar 

  • Gorbach PM, Drumright LN, Javanbakht M, Pond SL, Woelk CH, Daar ES, Little SJ (2008) Antiretroviral drug resistance and risk behavior among recently HIV-infected men who have sex with men. J Acquir Immune Defic Syndr 47:639–643

    Article  PubMed  Google Scholar 

  • Hogan KA, Staal RG, Sonsalla PK (2000) Analysis of VMAT2 binding after methamphetamine or MPTP treatment: disparity between homogenates and vesicle preparations. J Neurochem 74:2217–2220

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss AJ, Gibb JW (1980) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J Pharmacol Exp Ther 214:257–262

    PubMed  CAS  Google Scholar 

  • Itoh K, Mehraein P, Weis S (2000) Neuronal damage of the substantia nigra in HIV-1 infected brains. Acta Neuropathol 99:376–384

    Article  PubMed  CAS  Google Scholar 

  • Iwazaki T, McGregor IS, Matsumoto I (2006) Protein expression profile in the striatum of acute methamphetamine-treated rats. Brain Res 1097:19–25

    Article  PubMed  CAS  Google Scholar 

  • Iyo M, Sekine Y, Mori N (2004) Neuromechanism of developing methamphetamine psychosis: a neuroimaging study. Ann N Y Acad Sci 1025:288–295

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi S, Ladenheim B, Cadet JL (1998) Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Ann N Y Acad Sci 844:92–102

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi S, Deng X, Ladenheim B, McCoy MT, Cluster A, Cai NS, Cadet JL (2005) Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proc Natl Acad Sci U S A 102:868–873

    Article  PubMed  CAS  Google Scholar 

  • Kanthasamy A, Anantharam V, Ali SF, Kanthasamy AG (2006) Methamphetamine induces autophagy and apoptosis in a mesencephalic dopaminergic neuronal culture model: role of cathepsin-D in methamphetamine-induced apoptotic cell death. Ann N Y Acad Sci 1074:234–244

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA (2005) Brain hyperthermia as physiological and pathological phenomena. Brain Res Brain Res Rev 50:27–56

    Article  PubMed  Google Scholar 

  • Kiyatkin EA (2010) Brain temperature homeostasis: physiological fluctuations and pathological shifts. Front Biosci 15:73–92

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Sharma HS (2011) Expression of heat shock protein (HSP 72 kDa) during acute methamphetamine intoxication depends on brain hyperthermia: neurotoxicity or neuroprotection? J Neural Transm 118:47–60

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Brown PL, Sharma HS (2007) Brain edema and breakdown of the blood-brain barrier during methamphetamine intoxication: critical role of brain hyperthermia. Eur J Neurosci 26:1242–1253

    Article  PubMed  Google Scholar 

  • Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60:379–407

    Article  PubMed  CAS  Google Scholar 

  • Kuhn DM, Francescutti-Verbeem DM, Thomas DM (2008) Dopamine disposition in the presynaptic process regulates the severity of methamphetamine-induced neurotoxicity. Ann N Y Acad Sci 1139:118–126

    Article  PubMed  CAS  Google Scholar 

  • Kuperman DI, Freyaldenhoven TE, Schmued LC, Ali SF (1997) Methamphetamine-induced hyperthermia in mice: examination of dopamine depletion and heat-shock protein induction. Brain Res 771:221–227

    Article  PubMed  CAS  Google Scholar 

  • LaGasse LL, Wouldes T, Newman E, Smith LM, Shah RZ, Derauf C, Huestis MA, Arria AM, Della Grotta S, Wilcox T, Lester BM (2011) Prenatal methamphetamine exposure and neonatal neurobehavioral outcome in the USA and New Zealand. Neurotoxicol Teratol 33:166–175

    Article  PubMed  CAS  Google Scholar 

  • Langford D, Adame A, Grigorian A, Grant I, McCutchan JA, Ellis RJ, Marcotte TD, Masliah E (2003) Patterns of selective neuronal damage in methamphetamine-user AIDS patients. J Acquir Immune Defic Syndr 34:467–474

    Article  PubMed  CAS  Google Scholar 

  • Langford D, Grigorian A, Hurford R, Adame A, Crews L, Masliah E (2004) The role of mitochondrial alterations in the combined toxic effects of human immunodeficiency virus Tat protein and methamphetamine on calbindin positive-neurons. J Neurovirol 10:327–337

    Article  PubMed  CAS  Google Scholar 

  • Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D (2002) Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci 22:8951–8960

    PubMed  CAS  Google Scholar 

  • LaVoie MJ, Hastings TG (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 19:1484–1491

    PubMed  CAS  Google Scholar 

  • Liang H, Wang X, Chen H, Song L, Ye L, Wang SH, Wang YJ, Zhou L, Ho WZ (2008) Methamphetamine enhances HIV infection of macrophages. Am J Pathol 172:1617–1624

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Chang L, Vigorito M, Kass M, Li H, Chang SL (2009) Methamphetamine-induced behavioral sensitization is enhanced in the HIV-1 transgenic rat. J Neuroimmune Pharmacol 4:309–316

    Article  PubMed  Google Scholar 

  • Madden LJ, Flynn CT, Zandonatti MA, May M, Parsons LH, Katner SN, Henriksen SJ, Fox HS (2005) Modeling human methamphetamine exposure in nonhuman primates: chronic dosing in the rhesus macaque leads to behavioral and physiological abnormalities. Neuropsychopharmacology 30:350–359

    Article  PubMed  CAS  Google Scholar 

  • Magnuson DS, Knudsen BE, Geiger JD, Brownstone RM, Nath A (1995) Human immunodeficiency virus type 1 tat activates non-N-methyl-d-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann Neurol 37:373–380

    Article  PubMed  CAS  Google Scholar 

  • Mahajan SD, Hu Z, Reynolds JL, Aalinkeel R, Schwartz SA, Nair MP (2006) Methamphetamine modulates gene expression patterns in monocyte derived mature dendritic cells: implications for HIV-1 pathogenesis. Mol Diagn Ther 10:257–269

    PubMed  CAS  Google Scholar 

  • Mahajan SD, Aalinkeel R, Sykes DE, Reynolds JL, Bindukumar B, Adal A, Qi M, Toh J, Xu G, Prasad PN, Schwartz SA (2008) Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: Implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res 1203:133–148

    Article  PubMed  CAS  Google Scholar 

  • Mao CV, Hori E, Maior RS, Ono T, Nishijo H (2008) A primate model of schizophrenia using chronic PCP treatment. Rev Neurosci 19:83–89

    Article  PubMed  Google Scholar 

  • Maragos WF, Young KL, Turchan JT, Guseva M, Pauly JR, Nath A, Cass WA (2002) Human immunodeficiency virus-1 Tat protein and methamphetamine interact synergistically to impair striatal dopaminergic function. J Neurochem 83:955–963

    Article  PubMed  CAS  Google Scholar 

  • Marcondes MC, Flynn C, Watry DD, Zandonatti M, Fox HS (2010) Methamphetamine increases brain viral load and activates natural killer cells in simian immunodeficiency virus-infected monkeys. Am J Pathol 177:355–361

    Article  PubMed  CAS  Google Scholar 

  • Marek GJ, Vosmer G, Seiden LS (1990) Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons. Brain Res 513:274–279

    Article  PubMed  CAS  Google Scholar 

  • McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NM, McArthur JH, Selnes OA, Jacobson LP et al (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43:2245–2252

    PubMed  CAS  Google Scholar 

  • Melega WP, Lacan G, Harvey DC, Way BM (2007) Methamphetamine increases basal ganglia iron to levels observed in aging. Neuroreport 18:1741–1745

    Article  PubMed  CAS  Google Scholar 

  • Melega WP, Jorgensen MJ, Lacan G, Way BM, Pham J, Morton G, Cho AK, Fairbanks LA (2008) Long-term methamphetamine administration in the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral profiles. Neuropsychopharmacology 33:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Meltzer MS, Gendelman HE (1992) Mononuclear phagocytes as targets, tissue reservoirs, and immunoregulatory cells in human immunodeficiency virus disease. Curr Top Microbiol Immunol 181:239–263

    PubMed  CAS  Google Scholar 

  • Meltzer MS, Skillman DR, Gomatos PJ, Kalter DC, Gendelman HE (1990) Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Annu Rev Immunol 8:169–194

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki I, Asanuma M, Diaz-Corrales FJ, Fukuda M, Kitaichi K, Miyoshi K, Ogawa N (2006) Methamphetamine-induced dopaminergic neurotoxicity is regulated by quinone-formation-related molecules. FASEB J 20:571–573

    PubMed  CAS  Google Scholar 

  • Munch G, Raether A, Schoffel E, Illes P (1991) Postsynaptic dopamine DA1- and DA2-receptors in jejunal arteries of rabbits. J Cardiovasc Pharmacol 18:468–471

    Article  PubMed  CAS  Google Scholar 

  • Nair MP, Saiyed ZM (2010) Effect of methamphetamine on expression of HIV coreceptors and CC-chemokines by dendritic cells. Life Sci 88:987–994

    Article  PubMed  CAS  Google Scholar 

  • Nair MP, Mahajan S, Sykes D, Bapardekar MV, Reynolds JL (2006) Methamphetamine modulates DC-SIGN expression by mature dendritic cells. J Neuroimmune Pharmacol 1:296–304

    Article  PubMed  Google Scholar 

  • Narita M, Miyatake M, Shibasaki M, Tsuda M, Koizumi S, Yajima Y, Inoue K, Suzuki T (2005) Long-lasting change in brain dynamics induced by methamphetamine: enhancement of protein kinase C-dependent astrocytic response and behavioral sensitization. J Neurochem 93:1383–1392

    Article  PubMed  CAS  Google Scholar 

  • Nath A, Anderson C, Jones M, Maragos W, Booze R, Mactutus C, Bell J, Hauser KF, Mattson M (2000) Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia. J Psychopharmacol 14:222–227

    Article  PubMed  CAS  Google Scholar 

  • Navia BA, Cho ES, Petito CK, Price RW (1986a) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19:525–535

    Article  PubMed  CAS  Google Scholar 

  • Navia BA, Jordan BD, Price RW (1986b) The AIDS dementia complex: I. Clinical features. Ann Neurol 19:517–524

    Article  PubMed  CAS  Google Scholar 

  • Newton TF, Kalechstein AD, Hardy DJ, Cook IA, Nestor L, Ling W, Leuchter AF (2004) Association between quantitative EEG and neurocognition in methamphetamine-dependent volunteers. Clin Neurophysiol 115:194–198

    Article  PubMed  CAS  Google Scholar 

  • Office of Applied Studies S (2007) Methamphetamine Abuse. The NSDUH Report

  • Olsen NV (1998) Effects of dopamine on renal haemodynamics tubular function and sodium excretion in normal humans. Dan Med Bull 45:282–297

    PubMed  CAS  Google Scholar 

  • Ozono R, O’Connell DP, Wang ZQ, Moore AF, Sanada H, Felder RA, Carey RM (1997) Localization of the dopamine D1 receptor protein in the human heart and kidney. Hypertension 30:725–729

    PubMed  CAS  Google Scholar 

  • Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, Schuckit MA (2002) Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology 26:53–63

    Article  PubMed  CAS  Google Scholar 

  • Pendyala G, Trauger SA, Siuzdak G, Fox HS (2011) Short communication: quantitative proteomic plasma profiling reveals activation of host defense to oxidative stress in chronic SIV and methamphetamine comorbidity. AIDS Res Hum Retroviruses 27:179–182

    Article  PubMed  CAS  Google Scholar 

  • Pivonello R, Ferone D, de Herder WW, de Krijger RR, Waaijers M, Mooij DM, van Koetsveld PM, Barreca A, De Caro ML, Lombardi G, Colao A, Lamberts SW, Hofland LJ (2004) Dopamine receptor expression and function in human normal adrenal gland and adrenal tumors. J Clin Endocrinol Metab 89:4493–4502

    Article  PubMed  CAS  Google Scholar 

  • Ramirez SH, Potula R, Fan S, Eidem T, Papugani A, Reichenbach N, Dykstra H, Weksler BB, Romero IA, Couraud PO, Persidsky Y (2009) Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J Cereb Blood Flow Metab 29:1933–1945

    Article  PubMed  CAS  Google Scholar 

  • Rawson RA, Gonzales R, Brethen P (2002) Treatment of methamphetamine use disorders: an update. J Subst Abuse Treat 23:145–150

    Article  PubMed  Google Scholar 

  • Reiner BC, Keblesh JP, Xiong H (2009) Methamphetamine abuse, HIV infection, and neurotoxicity. Int J Physiol Pathophysiol Pharmacol 1:162–179

    PubMed  CAS  Google Scholar 

  • Reyes MG, Faraldi F, Senseng CS, Flowers C, Fariello R (1991) Nigral degeneration in acquired immune deficiency syndrome (AIDS). Acta Neuropathol 82:39–44

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JL, Mahajan SD, Sykes DE, Schwartz SA, Nair MP (2007) Proteomic analyses of methamphetamine (METH)-induced differential protein expression by immature dendritic cells (IDC). Biochim Biophys Acta 1774:433–442

    PubMed  CAS  Google Scholar 

  • Reynolds JL, Mahajan SD, Aalinkeel R, Nair B, Sykes DE, Agosto-Mujica A, Hsiao CB, Schwartz SA (2009) Modulation of the proteome of peripheral blood mononuclear cells from HIV-1-infected patients by drugs of abuse. J Clin Immunol 29:646–656

    Article  PubMed  CAS  Google Scholar 

  • Ricci A, Amenta F (1994) Dopamine D5 receptors in human peripheral blood lymphocytes: a radioligand binding study. J Neuroimmunol 53:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ricci A, Bronzetti E, Felici L, Tayebati SK, Amenta F (1997) Dopamine D4 receptor in human peripheral blood lymphocytes: a radioligand binding assay study. Neurosci Lett 229:130–134

    Article  PubMed  CAS  Google Scholar 

  • Ricci A, Bronzetti E, Felici L, Greco S, Amenta F (1998) Labeling of dopamine D3 and D4 receptor subtypes in human peripheral blood lymphocytes with [3H]7-OH-DPAT: a combined radioligand binding assay and immunochemical study. J Neuroimmunol 92:191–195

    Article  PubMed  CAS  Google Scholar 

  • Ricci A, Bronzetti E, Mignini F, Tayebati SK, Zaccheo D, Amenta F (1999) Dopamine D1-like receptor subtypes in human peripheral blood lymphocytes. J Neuroimmunol 96:234–240

    Article  PubMed  CAS  Google Scholar 

  • Riddle EL, Fleckenstein AE, Hanson GR (2006) Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J 8:E413–E418

    PubMed  Google Scholar 

  • Roberts AJ, Maung R, Sejbuk NE, Ake C, Kaul M (2010) Alteration of methamphetamine-induced stereotypic behaviour in transgenic mice expressing HIV-1 envelope protein gp120. J Neurosci Methods 186:222–225

    Article  PubMed  CAS  Google Scholar 

  • Rohr O, Sawaya BE, Lecestre D, Aunis D, Schaeffer E (1999) Dopamine stimulates expression of the human immunodeficiency virus type 1 via NF-kappaB in cells of the immune system. Nucleic Acids Res 27:3291–3299

    Article  PubMed  CAS  Google Scholar 

  • Romero CA, Bustamante DA, Zapata-Torres G, Goiny M, Cassels B, Herrera-Marschitz M (2006) Neurochemical and behavioural characterisation of alkoxyamphetamine derivatives in rats. Neurotox Res 10:11–22

    Article  PubMed  CAS  Google Scholar 

  • Roussotte F, Soderberg L, Sowell E (2010) Structural, metabolic, and functional brain abnormalities as a result of prenatal exposure to drugs of abuse: evidence from neuroimaging. Neuropsychol Rev 20:376–397

    Article  PubMed  Google Scholar 

  • Ruffolo RR Jr, Messick K (1985) Effects of dopamine, (+/−)-dobutamine and the (+)- and (−)-enantiomers of dobutamine on cardiac function in pithed rats. J Pharmacol Exp Ther 235:558–565

    PubMed  CAS  Google Scholar 

  • Saisho Y, Harris PE, Butler AE, Galasso R, Gurlo T, Rizza RA, Butler PC (2008) Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J Mol Histol 39:543–551

    Article  PubMed  CAS  Google Scholar 

  • Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE (2003) Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits. J Pharmacol Exp Ther 304:1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, Gibb JW (1985) Role of the dopamine uptake carrier in the neurochemical response to methamphetamine: effects of amfonelic acid. Eur J Pharmacol 109:73–80

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, Ritter JK, Sonsalla PK, Hanson GR, Gibb JW (1985) Role of dopamine in the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther 233:539–544

    PubMed  CAS  Google Scholar 

  • Schweinsburg BC, Taylor MJ, Alhassoon OM, Gonzalez R, Brown GG, Ellis RJ, Letendre S, Videen JS, McCutchan JA, Patterson TL, Grant I (2005) Brain mitochondrial injury in human immunodeficiency virus-seropositive (HIV+) individuals taking nucleoside reverse transcriptase inhibitors. J Neurovirol 11:356–364

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Kiyatkin EA (2009) Rapid morphological brain abnormalities during acute methamphetamine intoxication in the rat: an experimental study using light and electron microscopy. J Chem Neuroanat 37:18–32

    Article  PubMed  CAS  Google Scholar 

  • Shoptaw S, Reback CJ (2007) Methamphetamine use and infectious disease-related behaviors in men who have sex with men: implications for interventions. Addiction 102(Suppl 1):130–135

    Article  PubMed  Google Scholar 

  • Siegel JA, Craytor MJ, Raber J (2010) Long-term effects of methamphetamine exposure on cognitive function and muscarinic acetylcholine receptor levels in mice. Behav Pharmacol 21:602–614

    Article  PubMed  CAS  Google Scholar 

  • Siegel JA, Park BS, Raber J (2011) Long-term effects of neonatal methamphetamine exposure on cognitive function in adolescent mice. Behav Brain Res 219:159–164

    Article  PubMed  CAS  Google Scholar 

  • Smith LM, Lagasse LL, Derauf C, Grant P, Shah R, Arria A, Huestis M, Haning W, Strauss A, Della Grotta S, Fallone M, Liu J, Lester BM (2008) Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol Teratol 30:20–28

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla PK, Gibb JW, Hanson GR (1986) Roles of D1 and D2 dopamine receptor subtypes in mediating the methamphetamine-induced changes in monoamine systems. J Pharmacol Exp Ther 238:932–937

    PubMed  CAS  Google Scholar 

  • Sriram K, Miller DB, O’Callaghan JP (2006) Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 96:706–718

    Article  PubMed  CAS  Google Scholar 

  • Stephans SE, Yamamoto BK (1994) Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 17:203–209

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  PubMed  CAS  Google Scholar 

  • Talloczy Z, Martinez J, Joset D, Ray Y, Gacser A, Toussi S, Mizushima N, Nosanchuk JD, Goldstein H, Loike J, Sulzer D, Santambrogio L (2008) Methamphetamine inhibits antigen processing, presentation, and phagocytosis. PLoS Pathog 4:e28

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Nee AC, Lu A, Ran R, Sharp FR (2003) Blood genomic expression profile for neuronal injury. J Cereb Blood Flow Metab 23:310–319

    Article  PubMed  CAS  Google Scholar 

  • Theodore S, Cass WA, Maragos WF (2006a) Involvement of cytokines in human immunodeficiency virus-1 protein Tat and methamphetamine interactions in the striatum. Exp Neurol 199:490–498

    Article  PubMed  CAS  Google Scholar 

  • Theodore S, Cass WA, Nath A, Steiner J, Young K, Maragos WF (2006b) Inhibition of tumor necrosis factor-alpha signaling prevents human immunodeficiency virus-1 protein Tat and methamphetamine interaction. Neurobiol Dis 23:663–668

    Article  PubMed  CAS  Google Scholar 

  • Thomas SA (2004) Anti-HIV drug distribution to the central nervous system. Curr Pharm Des 10:1313–1324

    Article  PubMed  CAS  Google Scholar 

  • Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM (2004a) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367:349–354

    Article  PubMed  CAS  Google Scholar 

  • Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004b) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311:1–7

    Article  PubMed  CAS  Google Scholar 

  • Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, Lee JY, Toga AW, Ling W, London ED (2004) Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 24:6028–6036

    Article  PubMed  CAS  Google Scholar 

  • Toussi SS, Joseph A, Zheng JH, Dutta M, Santambrogio L, Goldstein H (2009) Short communication: methamphetamine treatment increases in vitro and in vivo HIV replication. AIDS Res Hum Retroviruses 25:1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Turchan J, Anderson C, Hauser KF, Sun Q, Zhang J, Liu Y, Wise PM, Kruman I, Maragos W, Mattson MP, Booze R, Nath A (2001) Estrogen protects against the synergistic toxicity by HIV proteins, methamphetamine and cocaine. BMC Neurosci 2:3

    Article  PubMed  CAS  Google Scholar 

  • Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 181:151–160

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–40

    Article  PubMed  Google Scholar 

  • Xu W, Zhu JP, Angulo JA (2005) Induction of striatal pre- and postsynaptic damage by methamphetamine requires the dopamine receptors. Synapse 58:110–121

    Article  PubMed  CAS  Google Scholar 

  • Zweben JE, Cohen JB, Christian D, Galloway GP, Salinardi M, Parent D, Iguchi M (2004) Psychiatric symptoms in methamphetamine users. Am J Addict 13:181–190

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The preparation of this review was supported by funding from National Institute on Drug Abuse (DA025528 and DA025011).

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Silverstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silverstein, P.S., Shah, A., Gupte, R. et al. Methamphetamine toxicity and its implications during HIV-1 infection. J. Neurovirol. 17, 401–415 (2011). https://doi.org/10.1007/s13365-011-0043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-011-0043-4

Keywords

Navigation