Skip to main content

Advertisement

Log in

Molecular systematics of small-eared shrews (Soricomorpha, Mammalia) within Cryptotis mexicanus species group from Mesoamérica

  • Original Paper
  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

Cryptotis mexicanus species group is the most diverse group of Cryptotis shrews in the Mesoamerican highlands (ca.13 species). In México, eight endemic species occurs and several taxa are endangered. The species’ limits and phylogenetic relationships of these taxa have been recently examined using morphology; nevertheless, little is known about phylogenetic relationships among Cryptotis species at the molecular level. Therefore, our research included a mitochondrial DNA marker as a source of additional information to corroborate taxonomic identification and produce a phylogenetic hypothesis of the C. mexicanus species group. We were particularly interested in the status of Cryptotis magnus, a species considered as relict on the basis of primitive characters. Based on the analyses of genetic sequences of a high number of Cryptotis species, outgroups, and phylogenetic analyses of parsimony and Bayesian inference, we confirmed that Cryptotis genus consists of different lineages that represent species groups. A detailed analysis suggests that C. magnus is a species that shares an evolutionary history with the C. mexicanus species group because it is imbedded within this group. In particular, our data strongly support that C. magnus and Cryptotis phillipsii are sister groups, a pair of species that inhabit allopatrically Southern México.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker R, Bradley R (2006) Speciation in mammals and genetic species concept. J Mammal 87:643–662

    Article  PubMed Central  PubMed  Google Scholar 

  • Baker R, ÓNeill M, McAliley R (2003) A new species of desert shrew, Notiosorex, based on nuclear and mitochondrial sequence data. Occas Pap Tex Tech Univ Mus 222(1):1–12

    Google Scholar 

  • Bradley R, Baker R (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973

    Article  Google Scholar 

  • Brandley M, Schmitz A, Reeder T (2005) Partitioned bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 54:373–390

    Article  PubMed  Google Scholar 

  • Carraway L (2007) Shrews (Eulypotyphla: Soricidae) of Mexico. Monographs of the West N Am Nat 3:1–91

    Article  Google Scholar 

  • Carroll D, Bradley R (2005) Systematics of the genus Sigmodon: DNA sequences from beta-fibrinogen and cytochrome b. Southwest Nat 50:342–349

    Article  Google Scholar 

  • Cervantes FA, Guevara L (2010) Rediscovery of the critically endangered Nelson’s small-eared shrew (Cryptotis nelsoni), endemic to Volcán San Martín, Eastern México. Mamm Biol 75:451–454

    Article  Google Scholar 

  • Choate J (1970) Systematics and zoogeographic of Middle American shrews of the genus Cryptotis. University of Kansas Publications. Museum of Natural History 19:195–317

  • Dubey S, Salamin N, Ohdachi S, Barrière P, Vogel P (2007) Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations. Mol Phylogenet Evo 44:126–137

    Article  CAS  Google Scholar 

  • Edwards CW, Bradley RD (2002) Molecular systematics of the genus Neotoma. Mol Phylogenet Evol 25:489–500

    Google Scholar 

  • García-Moreno J, Navarro-Sigüenza A, Peterson AT, Sánchez-González L (2004) Genetic variation coincides with geographic structure in the common bush-tanager (Chlorospingus ophthalmicus) complex from Mexico. Mol Phylogenet Evol 33:186–196

    Article  PubMed  Google Scholar 

  • Goloboff P (1999) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15:415–428

    Article  Google Scholar 

  • Goloboff P (2003) Parsimony, likelihood, and simplicity. Cladistics 19:91–103

    Article  Google Scholar 

  • Goloboff P, Farris F, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786

    Article  Google Scholar 

  • Grenyer R, Purvis A (2003) A composite species-level phylogeny of the ‘Insectivora’ (Mammalia: Order Lipotyphla Haeckel, 1866). J Zool 260:245–257

    Article  Google Scholar 

  • Hall E (1981) The mammals of North America, vol 2, Secondth edn. Wiley-Interscience, New York

    Google Scholar 

  • Harris AH (1998) Fossil history of shrews in North America. In: Wójcik JM, Wolsan M (eds) Evolution of Shrews. Mammal Research Institute, Polish Academy of Sciences, Bialowieza, pp 131–156

  • Huelsenbeck J, Ronquist F (2001) Mr. Bayes: Bayesian inference for phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hutterer R (2005) Order Soricomorpha. In: Wilson D, Reeder D (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Smithsonian Institution Press, Washington, D.C., pp 220–311

    Google Scholar 

  • International Commission on Zoological Nomenclature (2006) Opinion 2164 (case 3328). Didelphis Linnaeus, 1758 (Mammalia, Didelphidae): gender corrected to feminine, and Cryptotis Pomel, 1848 (Mammalia, Soricidae): gender fixed as masculine. Bull Zool Nomencl 63:282–283

    Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the Cytochrome b gene of mammals. J Mol Evol 32:128–144

    Article  CAS  PubMed  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factor. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org

  • Marshall D (2010) Cryptic failure of partitioned Bayesian phylogenetic analyses: lost in the land of long trees. Syst Biol 59:108–117

    Article  PubMed  Google Scholar 

  • Marshall D, Simon C, Buckley T (2006) Accurate branch length estimation in partitioned Bayesian analyses requires accommodation of among-partition rate variation and attention to branch length priors. Syst Biol 55:993–1003

    Article  PubMed  Google Scholar 

  • Merriam C (1895) Revision of the shrews of the American genera Blarina and Notiosorex. North Am Fauna 10:1–34

    Article  Google Scholar 

  • Nixon K (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • Ohdachi S, Hasegawa M, Iwasa M, Vogel P, Oshida T, Lin LK, Abe H (2006) Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome b gene sequences: with special reference to the Soricinae. J Zool 270:177–191

    Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Quiroga-Carmona M (2013) Una nueva especie de musaraña del género Cryptotis (Soricomorpha: Soricidae) de la Serranía del litoral en el norte de Venezuela. Mastozool Neotrop 20:123–137

    Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer/

  • Ramírez-Pulido J, Castillo-Morales A, Salame-Méndez A, Castro-Campillo A (2004) Características morfológicas y morfométricas de cinco especies de Cryptotis (Mammalia: Soricomorpha). Acta Zool Mex 20:9–37, n.s

    Google Scholar 

  • Ramírez-Pulido J, Arroyo-Cabrales J, Castro-Campillo A (2005) Estado actual y relación nomenclatural de los mamíferos terrestres de México. Acta Zool Mex 21:21–82, n.s

    Google Scholar 

  • Repenning CA (1967) Subfamilies and genera of the Soricidae. US Geol Surv Prof Paper 656(iv+):1–74

    Google Scholar 

  • Robertson P, Rickart E (1975) Cryptotis magna. Mamm Species 61:1–2

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck J (2003) Mr. Bayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. doi:10.1093/sysbio/sys029

    Google Scholar 

  • Sikes RS, Gannon WL, The Animal Care and Use Committee of the American Society of Mammalogists (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253

    Article  Google Scholar 

  • Simmons M, Freudenstein JV (2011) Spurious 99% bootstrap and jackknife support for unsupported clades. Mol Phylogenet Evol 61:177–191

    Article  PubMed  Google Scholar 

  • Smith MF, Patton JL (1993) Diversification of South American murid rodents: Evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol J Linn Soc 50:149–177

    Google Scholar 

  • Srivathsan A, Meier R (2012) On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28:190–194

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

    Google Scholar 

  • Wickliffe J, Bradley R, Stangl F, Patton J, Parish D, Jones C, Schmidly D, Baker R (2005) Molecular systematics and phylogeography history of Thomomys bottae in Texas. In: Sánchez-Cordero V, Medellín RA (eds) Contribuciones mastozoológicas en Homenaje a Bernardo Villa. Instituto de Biología, UNAM, Instituto de Ecología, UNAM, CONABIO, México, pp 507–522

    Google Scholar 

  • Willows-Munro S, Matthee CA (2011) Exploring the diversity and molecular evolution of shrews (Family Soricidae) using mtDNA cytochrome b data. Afr Zool 46:246–262

    Article  Google Scholar 

  • Woodman N (2005) Evolution and biogeography of Mexican small-eared shrews of the Cryptotis mexicana-group (Insectivora: Soricidae). In: Sánchez-Cordero V, Medellín RA (eds) Contribuciones mastozoológicas en Homenaje a Bernardo Villa. Instituto de Biología, UNAM; Instituto de Ecología, UNAM, CONABIO, México, pp 523–534

    Google Scholar 

  • Woodman N (2010) Two new species of shrews (Soricidae) from the western highlands of Guatemala. J Mammal 91:566–579

    Article  Google Scholar 

  • Woodman N (2011) Patterns of morphological variation amongst semifossorial shrews in the highlands of Guatemala, with the description of a new species (Mammalia, Soricomorpha, Soricidae). Zool J Linn Soc 163:1267–1288

    Article  Google Scholar 

  • Woodman N, Timm R (1993) Intraspecific and interspecific variation in the Cryptotis nigrescens species complex of small-eared shrews (Insectivora: Soricidae), with the description of a new species from Colombia. Fieldiana Zool 4:1–30

    Google Scholar 

  • Woodman N, Timm R (1999) Geographic variation and evolutionary relationships among broad-clawed shrews of the Cryptotis goldmani-group (Mammalia: Insectivora: Soricidae). Fieldiana Zool 91:1–35

    Google Scholar 

  • Woodman N, Timm R (2000) Taxonomy and evolutionary relationships of Phillipś small-eared shrew, Cryptotis phillipsii (Schaldach, 1966) from Oaxaca, Mexico (Mammalia: Insectivora: Soricidae). Proc Biol Soc Washington 113:339–355

    Google Scholar 

  • Woodman N, Cuartas-Calle CA, Delgado-V CA (2003) The humerus of Cryptotis colombiana and its bearing on the phylogenetic relationships of the species (Soricomorpha: Soricidae). J Mammal 84:832–839

    Article  Google Scholar 

  • Woodman N, Croft DA (2005) Fossil shrews from Honduras and their significance for Late Glacial Evolution in body size (Mammalia: Soricidae: Cryptotis). Fieldiana Geol 51:1–30

    Google Scholar 

  • Woodman N, Morgan J (2005) Skeletal morphology of the forefoot in shrews (Mammalia: Soricidae) of the genus Cryptotis, as revealed by digital X-rays. J Morphol 266:60–73

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Universidad Nacional Autónoma de México (PAPIIT grant IN215711 to FAC; Posgrado en Ciencias Biológicas scholarship to LG) and Consejo Nacional de Ciencia y Tecnología, México (scholarship CVU 215902 to LG) for financial support. S. Hernández-Betancourt for tissues samples of C. mayensis. L. Márquez and M. Martínez helped in the molecular laboratory. H. Ochoterena and D. Marshall provided valuable assistance with data. We thank two anonymous reviewers for their constructive comments, which helped us to improve the manuscript. We also thank staff of Comisión Nacional de Áreas Naturales Protegidas (CONANP): J. C. Castro (Reserva de la Biosfera El Triunfo) and R. O. Maldonado (Parque Nacional Izta-Popo-Zoquiapan y anexas). People from San Juan Lachao and Tlaxiaco (Oaxaca), Acultzingo and San Andrés Tuxtla (Veracruz), Amecameca (México), and Jaltenango (Chiapas) provided exceptional help in the field to find shrews.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lázaro Guevara.

Additional information

Communicated by: Allan McDevitt

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOCX 23 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guevara, L., Cervantes, F.A. Molecular systematics of small-eared shrews (Soricomorpha, Mammalia) within Cryptotis mexicanus species group from Mesoamérica. Acta Theriol 59, 233–242 (2014). https://doi.org/10.1007/s13364-013-0165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-013-0165-6

Keywords

Navigation