Skip to main content
Log in

ECD of Tyrosine Phosphorylation in a Triple Quadrupole Mass Spectrometer with a Radio-Frequency-Free Electromagnetostatic Cell

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A radio frequency-free electromagnetostatic (EMS) cell devised for electron-capture dissociation (ECD) of ions has been retrofitted into the collision-induced dissociation (CID) section of a triple quadrupole mass spectrometer to enable recording of ECD product-ion mass spectra and simultaneous recording of ECD-CID product-ion mass spectra. This modified instrument can be used to produce easily interpretable ECD and ECD-CID product-ion mass spectra of tyrosine-phosphorylated peptides that cover over 50% of their respective amino-acid sequences and readily identify their respective sites of phosphorylation. ECD fragmentation of doubly protonated, tyrosine-phosphorylated peptides, which was difficult to observe with FT-ICR instruments, occurs efficiently in the EMS cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mayer, P.M., Poon, C.: The mechanisms of collisional activation of ions in mass spectrometry. Mass Spectrom. Rev. 28, 608–639 (2009)

    Article  CAS  Google Scholar 

  2. Kim, M.S., Pandey, A.: Electron transfer dissociation mass spectrometry in proteomics. Proteomics 12, 530–542 (2012)

    Article  CAS  Google Scholar 

  3. Bakhtiar, R., Guan, Z.: Electron capture dissociation mass spectrometry in characterization of peptides and proteins. Biotechnol. Lett. 28, 1047–1059 (2006)

    Article  CAS  Google Scholar 

  4. Zubarev, R.: Electron capture dissociation and other ion-electron fragmentation reactions. In: Laskin, J., Lifshitz, C. (eds.) Principles of Mass Spectrometry Applied to Biomolecules, p. 475. John Wiley and Sons, Inc., Hoboken (2006)

    Chapter  Google Scholar 

  5. Baba, T., Hashimoto, Y., Hasegawa, H., Hirabayashi, A., Waki, I.: Electron capture dissociation in a radio frequency ion trap. Anal. Chem. 76, 4263–4266 (2004)

    Article  CAS  Google Scholar 

  6. Satake, H., Hasegawa, H., Hirabayashi, A., Hashimoto, M., Baba, T.: Fast multiple electron capture dissociation in a linear radio frequency quadrupole ion trap. Anal. Chem. 79, 8755–8761 (2007)

    Article  CAS  Google Scholar 

  7. Silivra, O.A., Kjeldsen, F., Ivonin, I.A., Zubarev, R.: Electron capture dissociation of polypeptides in a three-dimensional quadrupole ion trap: implementation and first results. J. Am. Soc. Mass Spectrom. 16, 22–27 (2005)

    Article  CAS  Google Scholar 

  8. Ding, L., Brancia, F.L.: Electron capture dissociation in a digital ion trap mass spectrometer. Anal. Chem. 78, 1995–2000 (2006)

    Article  CAS  Google Scholar 

  9. Voinov, V.G., Deinzer, M.L., Barofsky, D.F.: Electron capture dissociation in a linear radiofrequency-free magnetic cell. Rapid Commun. Mass Spectrom. 22, 3087–3088 (2008)

    Article  CAS  Google Scholar 

  10. Voinov, V.G., Beckman, J.S., Deinzer, M.L., Barofsky, D.F.: Electron-capture dissociation (ECD), collision-induced dissociation (CID) and ECD/CID in a linear radio-frequency-free magnetic cell. Rapid Commun. Mass Spectrom. 23, 3028–3030 (2009)

    Article  CAS  Google Scholar 

  11. Voinov, V.G., Deinzer, M.L., Barofsky, D.F.: A radio-frequency-free cell for electron capture dissociation in tandem mass spectrometry. Anal. Chem. 81, 1238–1243 (2009)

    Article  CAS  Google Scholar 

  12. Voinov, V.G., Deinzer, M.L., Beckman, J.S., Barofsky, D.F.: Electron capture, collision-induced, and electron capture-collision induced dissociation in Q-TOF. J. Am. Soc. Mass Spectrom. 22, 607–611 (2011)

    Article  CAS  Google Scholar 

  13. Horn, D.M., Zubarev, R.A., McLafferty, F.W.: Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 97, 10313–10317 (2000)

    Article  CAS  Google Scholar 

  14. Budnik, B.A., Zubarev, R.A.: MH2+• ion production from protonated polypeptides by electron impact: observation and determination of ionization energies and a cross-section. Chem. Phys. Lett. 316, 19–23 (2000)

    Article  CAS  Google Scholar 

  15. Fung, Y.M., Adams, C.M., Zubarev, R.A.: Electron ionization dissociation of singly and multiply charged peptides. J. Am. Chem. Soc. 131, 9977–9985 (2009)

    Article  CAS  Google Scholar 

  16. Mann, M., Ong, S.-E., Grønborg, M., Steen, H., Jensen, O.N., Pandey, A.: Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268 (2002)

    Article  CAS  Google Scholar 

  17. Kjeldsen, F., Haselmann, K.F., Budnik, B.A., Jensen, F., Zubarev, R.A.: Dissociative capture of hot (3–13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation. Chem. Phys. Lett. 356, 201–206 (2002)

    Article  CAS  Google Scholar 

  18. Leymarie, N., Berg, E.A., McComb, M.E., O’Connor, P.B., Grogan, J., Oppenheim, F.G., Costello, C.E.: Tandem mass spectrometry for structural characterization of proline-rich proteins: application to salivary PRP-3. Anal. Chem. 74, 4124–4132 (2002)

    Article  CAS  Google Scholar 

  19. Creese, A.J., Cooper, H.J.: The effect of phosphorylation on the electron capture dissociation of peptide ions. J. Am. Soc. Mass Spectrom. 19, 1263–1274 (2008)

    Article  CAS  Google Scholar 

  20. Longevialle, P., Lefèvre, O., Mollova, N., Bouchoux, G.: Further arguments concerning a ‘rotational effect’ in the unimolecular fragmentations of organic ions in the gas phase. Rapid Commun. Mass Spectrom. 12, 57–60 (1998)

    Article  CAS  Google Scholar 

  21. Stensballe, A., Jensen, O.N., Olsen, J.V., Haselmann, K.F., Zubarev, R.A.: Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom. 14, 1793–1800 (2000)

    Article  CAS  Google Scholar 

  22. Nishikaze, T., Takayama, M.: Influence of charge state and amino acid composition on hydrogen transfer in electron capture dissociation of peptides. J. Am. Soc. Mass Spectrom. 21, 1979–1988 (2010)

    Article  CAS  Google Scholar 

  23. Schwartz, B.L., Bursey, M.M.: Some proline substituent effects in the tandem mass spectrum of protonated pentaalanine. Biol. Mass Spectrom. 21, 92–96 (1992)

    Article  CAS  Google Scholar 

  24. Vaisar, T., Urban, J.: Probing the proline effect in CID of protonated peptides. J. Mass Spectrom. 31, 1185–1187 (1996)

    Article  CAS  Google Scholar 

  25. Paizs, B., Suhai, S.: Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508–548 (2005)

    Article  CAS  Google Scholar 

  26. Kitteringham, N.R., Jenkins, R.E., Lane, C.S., Elliott, V.L., Park, B.K.: Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877, 1229–1239 (2009)

    Article  CAS  Google Scholar 

  27. Chambers, A.G., Percy, A.J., Simon, R., Borchers, C.H.: MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum. Expert Rev. Proteomics 11, 137–148 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Various aspects of this research were supported by grants from the NSF (CHE-0924027), the Oregon Nanoscience and Microtechnologies Institute (#09-31 #3.5), NIH NCRR (R01RR026275), NIH NIEHS (ES00210–Environmental Health Sciences Center), and Agilent Technologies (#2443). The authors thank Peter D. Hoffman (Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon) for his assistance in collecting some of the data presented in this manuscript, Elsworth T. Hinke and Larry M. Nelson (Department of Chemistry, Oregon State University, Corvallis, Oregon) for their assistance in fabricating components of the EMS ECD cell used in this study, Piriya Wongkongkathep and Dr. Joseph Loo (Department of Chemistry and Biochemistry, University of California-Los Angeles) for graciously acquiring and labeling the Bruker 15 T SolariX ECD FT-ICR product-ion mass spectra displayed in this report, and George Stafford (Agilent Technologies, Santa Clara, California) for generously reading the manuscript and offering several useful suggestions for improving its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery G. Voinov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voinov, V.G., Bennett, S.E., Beckman, J.S. et al. ECD of Tyrosine Phosphorylation in a Triple Quadrupole Mass Spectrometer with a Radio-Frequency-Free Electromagnetostatic Cell. J. Am. Soc. Mass Spectrom. 25, 1730–1738 (2014). https://doi.org/10.1007/s13361-014-0956-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0956-2

Key words

Navigation