Skip to main content
Log in

Real-Time Digitization of Metabolomics Patterns from a Living System Using Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The real-time quantification of changes in intracellular metabolic activities has the potential to vastly improve upon traditional transcriptomics and metabolomics assays for the prediction of current and future cellular phenotypes. This is in part because intracellular processes reveal themselves as specific temporal patterns of variation in metabolite abundance that can be detected with existing signal processing algorithms. Although metabolite abundance levels can be quantified by mass spectrometry (MS), large-scale real-time monitoring of metabolite abundance has yet to be realized because of technological limitations for fast extraction of metabolites from cells and biological fluids. To address this issue, we have designed a microfluidic-based inline small molecule extraction system, which allows for continuous metabolomic analysis of living systems using MS. The system requires minimal supervision, and has been successful at real-time monitoring of bacteria and blood. Feature-based pattern analysis of Escherichia coli growth and stress revealed cyclic patterns and forecastable metabolic trajectories. Using these trajectories, future phenotypes could be inferred as they exhibit predictable transitions in both growth and stress related changes. Herein, we describe an interface for tracking metabolic changes directly from blood or cell suspension in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Schmidt, M.D., Vallabhajosyula, R.R., Jenkins, J.W., Hood, J.E., Soni, A.S., Wikswo, J.P., Lipson, H.: Automated refinement and inference of analytical models for metabolic networks. Phys. Biol. 8, 055011, 1–20 (2011)

  2. Richard, P.: The rhythm of yeast. FEMS Microbiol. Rev. 27, 547–557 (2003)

    Article  CAS  Google Scholar 

  3. Levering, J., Kummer, U., Becker, K., Sahle, S.: Glycolytic oscillations in a model of a lactic acid bacterium metabolism. Biophys. Chem. 172, 53–60 (2013)

    Article  CAS  Google Scholar 

  4. Farre, E.M., Weise, S.E.: The interactions between the circadian clock and primary metabolism. Curr. Opin. Plant Biol. 15(3), 293–300 (2012)

    Article  CAS  Google Scholar 

  5. Henson, C.A., Duke, S.H.: Oscillations in plant metabolism. Prog. Clin. Biol. Res. 341B, 821–834 (1990)

    CAS  Google Scholar 

  6. Schwemmler, W., Herrman, M.: Oscillation in the energy metabolism of the insect host symbiont. II. Analysis of possible endogenous rhythms in both systems. Cytobios 27, 193–208 (1980)

    CAS  Google Scholar 

  7. Dahlgren, G.M., Kauri, L.M., Kennedy, R.T.: Substrate effects on oscillations in metabolism, calcium, and secretion in single mouse islets of Langerhans. Biochim. Biophys. Acta 1724, 23–26 (2005)

    Article  CAS  Google Scholar 

  8. Obrig, H., Neufang, M., Wenzel, R., Kohl, M., Steinbrink, J., Einhaupl, K., Villringer, A.: Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage 12(6), 623–639 (2000)

    Article  CAS  Google Scholar 

  9. Bergsten, P., Westerlund, J., Liss, P., Carlsson, P.O.: Primary in vivo oscillations of metabolism in the pancreas. Diabetes 51(3), 699–703 (2002)

    Article  CAS  Google Scholar 

  10. Iotti, S., Borsari, M., Bendahan, D.: Oscillations in energy metabolism. Biochim. Biophys. Acta 1797, 1353–1361 (2010)

    Article  CAS  Google Scholar 

  11. Patti, G.J., Tautenhahn, R., Siuzdak, G.: Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Anal. Chem. 7, 508–516 (2012)

    CAS  Google Scholar 

  12. Macounova, K., Cabrera, C.R., Holl, M.R., Yager, P.: Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing. Anal. Chem. 72, 3745–3751 (2000)

    Article  CAS  Google Scholar 

  13. Schilling, E.A., Kamholz, A.E., Yager, P.: Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 74, 1798–1804 (2002)

    Article  CAS  Google Scholar 

  14. Melin, J., Quake, S.R.: Microfluidic large-scale integration: the evolution of design rules for biological integration. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)

    Article  CAS  Google Scholar 

  15. Tautenhahn, R., Patti, G.J., Rinehart, D., Siuzdak, G.: XCMS Online: a web-based platform to process untargeted metabolomic data. Anal. Chem. 84, 5035–5039 (2012)

    Article  CAS  Google Scholar 

  16. Serkova, N.J., Standiford, T.J., Stringer, K.A.: The emerging field of quantitative blood metabolomics of biomarker discovery in critical illnesses. Am. J. Respir. Crit. Care Med. 184, 647–655 (2011)

    Article  CAS  Google Scholar 

  17. Berk, M., Ebbels, T., Montana, G.: A statistical framework for biomarker discovery in metabolomics time course data. Bioinformatics 27(14), 1979–1985 (2011)

    Article  CAS  Google Scholar 

  18. Box, G.P., Jenkins, G.M.: Time Series Analysis Forecasting and Control. Holden-Day Inc., San Francisco 1–50 (1976)

  19. Duffy, D.C., McDonald, J.C., Schueller, J.A., Whitesides, G.M.: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998)

    Article  CAS  Google Scholar 

  20. Bhagat, A.S., Kuntaegowdanahalli, S.S., Papautsky, I.: Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8, 1906–1914 (2008)

    Article  CAS  Google Scholar 

  21. Bhagat, A.S., Bow, H., Wei Hou, H., Jin Tan, S., Han, J., Lim, C.: Microfluidics for cell separation. Med. Biol. Eng. Comput. 48, 999–1014 (2010)

    Article  Google Scholar 

  22. Volkmer, B., Heinemann, M.: Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS One 6(7), e23126 (2011)

    Article  CAS  Google Scholar 

  23. Bald, T., Barth, J., Niehues, A., Specht, M., Hippler, M., Fufezan, C.: PYMZML – Python module for high throughput bioinformatics on mass spectrometry data. Bioinformatics 28(7), 1052–1053 (2012)

    Article  CAS  Google Scholar 

  24. Atencia, J., Beebe, D.J.: Controlled microfluidic interfaces. Nature 437, 648–655 (2005)

    Article  CAS  Google Scholar 

  25. Pastore, A., Federici, G., Bertini, E., Piemonte, F.: Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta 333, 19–39 (2003)

    Article  CAS  Google Scholar 

  26. Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z., Patti, G.J., Siuzdak, G.: An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol. 30(9), 826–828 (2012)

    Article  CAS  Google Scholar 

  27. Berglin, E.H., Carlsson, J.: Potentiation by sulfide of hydrogen peroxide-induced killing of Escherichia coli. Infect. Immun. 49(3), 538–543 (1985)

    CAS  Google Scholar 

  28. Bandt, D., Cynober, L.: Therapeutic use of branch-chain amino acids in burn, trauma, and sepsis. J. Nutr. 136, 308S–313S (2006)

  29. Huang, C., Lin, H., Yang, X.J.: Industrial production of recombinant therapeutics. Ind. Microbiol. Biotechnol. 39, 383–399 (2012)

    Article  CAS  Google Scholar 

  30. Herder, C., Karakas, M., Koenig, W.: Biomarkers for the prediction of type 2 diabetes and cardiovascular disease. Clin. Pharmacol. Ther. 90(1), 52–66 (2011)

    Article  CAS  Google Scholar 

  31. Patti, G.J., Yanes, O., Shriver, L.P., Courade, J., Tautenhahn, R., Manchester, M., Siuzdak, G.: Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin. Nat. Chem. Biol. 8(3), 232–234 (2012)

    Article  CAS  Google Scholar 

  32. Syms, R.R.A.: Advances in microfabricated mass spectrometers. Anal. Bioanal. Chem. 393, 427–429 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jonathan Hilmer for technical assistance in Mass Spectrometry facility. The authors acknowledge support for this work by National Science Foundation, MCB0646499, MCB102248, Kopriva Graduate Fellowship, and Howard Hughes Medical Institute (HHMI). Montana Microfabrication Facility (MMF). Mass Spectrometry, Proteomics, and Metabolomics Core Facility supported by the Murdock Charitable Trust, INBRE MT grant no. P20 RR-16455-08, NIH grant nos. P20 RR-020185, and P20 RR-024237 from the COBRE Program of the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Bothner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(PDF 112 kb)

Supplementary Figure 2

(PDF 31 kb)

Supplementary Table 1

(PDF 18 kb)

Supplementary Figure 3

(PDF 477 kb)

Supplementary Table 2

(PDF 26 kb)

Supplementary Figure 4

(PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinemann, J., Noon, B., Mohigmi, M.J. et al. Real-Time Digitization of Metabolomics Patterns from a Living System Using Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 1755–1762 (2014). https://doi.org/10.1007/s13361-014-0922-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0922-z

Keywords

Navigation