Skip to main content
Log in

Quantification of Intact and Truncated Stromal Cell-Derived Factor-1α in Circulation by Immunoaffinity Enrichment and Tandem Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Stromal cell-derived factor 1α (SDF-1α) or CXCL12 is a small pro-inflammatory chemoattractant cytokine and a substrate of dipeptidyl peptidase IV (DPP-IV). Proteolytic cleavage by DPP-IV inactivates SDF-1α and attenuates its interaction with CXCR4, its cell surface receptor. To enable investigation of suppression of such inactivation with pharmacologic inhibition of DPP-IV, we developed quantitative mass spectrometric methods that differentiate intact SDF-1α from its inactive form. Using top-down strategy in quantification, we demonstrated the unique advantage of keeping SDF-1α’s two disulfide bridges intact in the analysis. To achieve the optimal sensitivity required for quantification of intact and truncated SDF-1α at endogenous levels in blood, we coupled nano-flow tandem mass spectrometry with antibody-based affinity enrichment. The assay has a quantitative range of 20 pmol/L to 20 nmol/L in human plasma as well as in rhesus monkey plasma. With only slight modification, the same assay can be used to quantify SDF-1α in mice. Using two in vivo animal studies as examples, we demonstrated that it was critical to differentiate intact SDF-1α from its truncated form in the analysis of biomarkers for pharmacologic inhibition of DPP-IV activity. These novel methods enable translational research on suppression of SDF-1 inactivation with DPP-IV inhibition and can be applied to relevant clinical samples in the future to yield new insights on change of SDF-1α levels in disease settings and in response to therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ratajczak, M.Z., Zuba-Surma, E., Kucia, M., Reca, R., Wojakowski, W., Ratajczak, J.: The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20, 1915–1924 (2006)

    Article  CAS  Google Scholar 

  2. Ma, Q., Jones, D., Borghesani, P.R., Segal, R.A., Nagasawa, T., Kishimoto, T., Bronson, R.T., Springer, T.A.: Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 95, 9448–9453 (1998)

    Article  CAS  Google Scholar 

  3. Ratajczak, M.Z., Kucia, M., Reca, R., Majka, M., Janowska-Wieczorek, A., Ratajczak, J.: Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver, and neural cells ‘hide out’ in the bone marrow. Leukemia 18, 29–40 (2004)

    Article  CAS  Google Scholar 

  4. Kryczek, I., Wei, S., Keller, E., Liu, R., Zou, W.: Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am. J. Physiol. Cell Physiol. 292, C987–995 (2007)

    Article  CAS  Google Scholar 

  5. Valenzuela-Fernandez, A., Planchenault, T., Baleux, F., Staropoli, I., Le-Barillec, K., Leduc, D., Delaunay, T., Lazarini, F., Virelizier, J.L., Chignard, M., Pidard, D., Arenzana-Seisdedos, F.: Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J. Biol. Chem. 277, 15677–15689 (2002)

    Article  CAS  Google Scholar 

  6. Christopherson II, K.W., Hangoc, G., Broxmeyer, H.E.: Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J. Immunol. 169, 7000–7008 (2002)

    CAS  Google Scholar 

  7. Proost, P., Struyf, S., Schols, D., Durinx, C., Wuyts, A., Lenaerts, J.-P., De Clercq, E., De Meester, I., Van Damme, J.: Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1α. FEBS Lett. 432, 73–76 (1998)

    Article  CAS  Google Scholar 

  8. Yu, L., Cecil, J., Peng, S.-B., Schrementi, J., Kovacevic, S., Paul, D., Su, E.W., Wang, J.: Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene 374, 174–179 (2006)

    Article  CAS  Google Scholar 

  9. De La Luz Sierra, M., Yang, F., Narazaki, M., Salvucci, O., Davis, D., Yarchoan, R., Zhang, H.H., Fales, H., Tosato, G.: Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 103, 2452–2459 (2004)

    Article  Google Scholar 

  10. Shioda, T., Kato, H., Ohnishi, Y., Tashiro, K., Ikegawa, M., Nakayama, E.E., Hu, H., Kato, A., Sakai, Y., Liu, H., Honjo, T., Nomoto, A., Iwamoto, A., Morimoto, C., Nagai, Y.: Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc. Natl. Acad. Sci. U. S. A. 95, 6331–6336 (1998)

    Article  CAS  Google Scholar 

  11. Mentlein, R.: Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul. Pept. 85, 9–24 (1999)

    Article  CAS  Google Scholar 

  12. de Meester, I., Lambeir, A.M., Proost, P., Scharpe, S.: Dipeptidyl peptidase IV substrates. An update on in vitro peptide hydrolysis by human DPPIV. Adv. Exp. Med. Biol. 524, 3–17 (2003)

    Article  Google Scholar 

  13. Busso, N., Wagtmann, N., Herling, C., Chobaz-Peclat, V., Bischof-Delaloye, A., So, A., Grouzmann, E.: Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am. J. Pathol. 166, 433–442 (2005)

    Article  CAS  Google Scholar 

  14. Nelson, R.W., Krone, J.R., Bieber, A.L., Williams, P.: Mass spectrometric immunoassay. Anal. Chem. 67, 1153–1158 (1995)

    Article  CAS  Google Scholar 

  15. Anderson, N.L., Anderson, N.G., Haines, L.R., Hardie, D.B., Olafson, R.W., Pearson, T.W.: Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J. Proteome Res. 3, 235–244 (2004)

    Article  CAS  Google Scholar 

  16. Nedelkov, D., Kiernan, U.A., Niederkofler, E.E., Tubbs, K.A., Nelson, R.W.: Investigating diversity in human plasma proteins. Proc. Natl. Acad. Sci. U. S. A. 102, 10852–10857 (2005)

    Article  CAS  Google Scholar 

  17. Nedelkov, D.: Mass spectrometry-based immunoassays for the next phase of clinical applications. Expert Rev. Proteome 3, 631–640 (2006)

    Article  CAS  Google Scholar 

  18. Nedelkov, D., Phillips, D.A., Tubbs, K.A., Nelson, R.W.: Investigation of human protein variants and their frequency in the general population. Mol. Cell. Proteomics 6, 1183–1187 (2007)

    Article  CAS  Google Scholar 

  19. Neubert, H., Gale, J., Muirhead, D.: Online high-flow peptide immunoaffinity enrichment and nanoflow LC-MS/MS: assay development for total salivary pepsin/pepsinogen. Clin. Chem. 56, 1413–1423 (2010)

    Article  CAS  Google Scholar 

  20. Wang, W., Walker, N.D., Zhu, L.J., Wu, W., Ge, L., Gutstein, D.E., Yates, N.A., Hendrickson, R.C., Ogletree, M.L., Cleary, M., Opiteck, G.J., Chen, Z.: Quantification of circulating D-dimer by peptide immunoaffinity enrichment and tandem mass spectrometry. Anal. Chem. 84, 6891–6898 (2012)

    Article  CAS  Google Scholar 

  21. Xu, H., Zhang, L., Freitas, M.A.: Identification and characterization of disulfide bonds in proteins and peptides from tandem MS data by use of the MassMatrix MS/MS search engine. J. Proteome Res. 7, 138–144 (2008)

    Article  CAS  Google Scholar 

  22. Huang, Y., Triscari, J.M., Tseng, G.C., Pasa-Tolic, L., Lipton, M.S., Smith, R.D., Wysocki, V.H.: Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Anal. Chem. 77, 5800–5813 (2005)

    Article  CAS  Google Scholar 

  23. Currie, L.A.: Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal. Chem. 40, 586–593 (1968)

    Article  CAS  Google Scholar 

  24. Murphy, A.T., Witcher, D.R., Luan, P., Wroblewski, V.J.: Quantitation of hepcidin from human and mouse serum using liquid chromatography tandem mass spectrometry. Blood 110, 1048–1054 (2007)

    Article  CAS  Google Scholar 

  25. Rogatsky, E., Balent, B., Goswami, G., Tomuta, V., Jayatillake, H., Cruikshank, G., Vele, L., Stein, D.T.: Sensitive quantitative analysis of C-peptide in human plasma by 2-dimensional liquid chromatography-mass spectrometry isotope-dilution assay. Clin. Chem. 52, 872–879 (2006)

    Article  CAS  Google Scholar 

  26. Nelson, R.W., Nedelkov, D., Tubbs, K.A., Kiernan, U.A.: Quantitative mass spectrometric immunoassay of insulin like growth factor 1. J. Proteome Res. 3, 851–855 (2004)

    Article  CAS  Google Scholar 

  27. Niederkofler, E.E., Kiernan, U.A., O’Rear, J., Menon, S., Saghir, S., Protter, A.A., Nelson, R.W., Schellenberger, U.: Detection of endogenous B-type natriuretic peptide at very low concentrations in patients with heart failure. Circ. Heart Fail. 1, 258–264 (2008)

    Article  CAS  Google Scholar 

  28. Chappell, D.L., Lee, A.Y.H., Castro-Perez, J., Zhou, H., Roddy, T.P., Lassman, M.E., Shankar, S.S., Yates, N.A., Wang, W., Laterza, O.F.: An ultrasensitive method for the quantitation of active and inactive GLP-1 in human plasma via immunoaffinity LC-MS/MS. Bioanalysis 6, 33–42 (2014)

    Article  CAS  Google Scholar 

  29. McQuibban, G.A., Butler, G.S., Gong, J.H., Bendall, L., Power, C., Clark-Lewis, I., Overall, C.M.: Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem. 276, 43503–43508 (2001)

    Article  CAS  Google Scholar 

  30. Durinx, C., Lambeir, A.M., Bosmans, E., Falmagne, J.B., Berghmans, R., Haemers, A., Scharpe, S., De Meester, I.: Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur. J. Biochem. 267, 5608–5613 (2000)

    Article  CAS  Google Scholar 

  31. Huber, B.C., Brunner, S., Segeth, A., Nathan, P., Fischer, R., Zaruba, M.M., Vallaster, M., Theiss, H.D., David, R., Gerbitz, A., Franz, W.M.: Parathyroid hormone is a DPP-IV inhibitor and increases SDF-1-driven homing of CXCR4(+) stem cells into the ischaemic heart. Cardiovasc. Res. 90, 529–537 (2011)

    Article  CAS  Google Scholar 

  32. Segers, V.F., Tokunou, T., Higgins, L.J., MacGillivray, C., Gannon, J., Lee, R.T.: Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116, 1683–1692 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Aimee L. Burton, Sophie Brennan, Irene Capodanno, and Xiaolan Shen for help with the mouse study. They are grateful for discussions with Joel Berger, David E. Kelley, and Nancy A. Thornberry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Choi, B.K., Li, W. et al. Quantification of Intact and Truncated Stromal Cell-Derived Factor-1α in Circulation by Immunoaffinity Enrichment and Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 614–625 (2014). https://doi.org/10.1007/s13361-013-0822-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0822-7

Key words

Navigation