Skip to main content
Log in

Nucleophilic Aromatic Substitution with Dianions: Reactions Driven by the Release of Coulomb Repulsion

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The reactions of a nucleophilic dianion with a series of activated aryl bromides were studied in the gas phase. Nucleophilic aromatic substitution (SNAr) as well as proton transfer reactions were observed. Rate constants and branching ratios were determined for all the reactions and the experimental data are supported by ab initio calculations. Reactions with bis-trifluoromethylbromobenzenes give only SNAr reactions and the rate constants follow the expected pattern, with substituents at the ortho and para positions having the greatest impact. Reactions of polyfluorobromobenzenes give a mix of proton transfer (when possible) and SNAr, with both bromide and fluoride acting as leaving groups. The latter is much less thermodynamically favorable but is the dominant pathway in each case. The selectivity of the reactions indicate that the products are determined early on the potential energy surface, before there is significant cleavage of the bond to the leaving group—the reaction is potentially directed by the initial formation of a hydrogen bond with the arene. The computational data also suggest that hydrogen bonding in the product ion–ion complexes can stabilize the system until there is sufficient charge separation to use the internal Coulomb repulsion to drive the reactions to products. Overall, the results highlight (1) the ability of multiply-charged systems to efficiently funnel their Coulomb repulsion into reaction processes that are intrinsically unfavorable, and (2) the high degree of selectivity that can be attained even in systems with multiple, low-barrier pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bunnett, J.F., Zahler, R.E.: Aromatic nucleophilic substitution reactions. Chem. Rev. 49, 273–412 (1951)

    Article  CAS  Google Scholar 

  2. Miller, J.: Aromatic Nucleophilic Substitution. Elsevier, Amsterdam. 1–26 (1968)

  3. Bernasconi, C.F.: Kinetic-behavior of short-lived anionic sigma-complexes. Acc. Chem. Res. 11, 147–152 (1978)

    Article  CAS  Google Scholar 

  4. Buncel, E., Dust, J.M., Terrier, F.: Rationalizing the regioselectivity in polynitroarene anionic sigma-adduct formation—relevance to nucleophilic aromatic-substitution. Chem. Rev. 95, 2261–2280 (1995)

    Article  CAS  Google Scholar 

  5. Briscese, S.M., Riveros, J.M.: Gas-phase nucleophilic reactions of aromatic systems. J. Am. Chem. Soc. 97, 230–231 (1975)

    Article  CAS  Google Scholar 

  6. Giroldo, T., Xavier, L.A., Riveros, J.M.: An unusually fast nucleophilic aromatic displacement reaction: the gas-phase reaction of fluoride ions with nitrobenzene. Angew. Chem. Int. Ed. 43, 3588–3590 (2004)

    Article  CAS  Google Scholar 

  7. Ingemann, S., Nibbering, N.M.M.: Gas-phase reactions of anions with 2-fluoroanisole, 3-fluoroanisole, and 4-fluoroanisole. J. Org. Chem. 48, 183–191 (1983)

    Article  CAS  Google Scholar 

  8. Ingemann, S., Nibbering, N.M.M.: Gas-phase reactions between anions and alkyl pentafluorophenyl ethers. Nouv. J. Chim. 8, 299–304 (1984)

    CAS  Google Scholar 

  9. Ingemann, S., Nibbering, N.M.M., Sullivan, S.A., Depuy, C.H.: Nucleophilic aromatic-substitution in the gas-phase—the importance of F-ion molecule complexes formed in gas-phase reactions between nucleophiles and some alkyl pentafluorophenyl ethers. J. Am. Chem. Soc. 104, 6520–6527 (1982)

    Article  CAS  Google Scholar 

  10. Laerdahl, J.K., Uggerud, E.: Gas phase nucleophilic substitution. Int. J. Mass Spectrom. 214, 277–314 (2002)

    Article  CAS  Google Scholar 

  11. Linnert, H.V., Riveros, J.M.: Benzyne-related mechanisms in the gas-phase ion–molecule reactions of haloarenes. Int. J. Mass Spectrom. Ion Process. 140, 163–176 (1994)

    Article  CAS  Google Scholar 

  12. Gronert, S., Fagin, A.E., Wong, L.: Direct measurements of deuterium kinetic isotope effects in anionic, gas-phase substitution and elimination reactions. J. Am. Chem. Soc. 129, 5330–5331 (2007)

    Google Scholar 

  13. Gronert, S., Fagin, A.E., Okamoto, K., Mogali, S., Pratt, L.M.: Leaving group effects in gas-phase substitutions and eliminations. J. Am. Chem. Soc. 126, 12977–12983 (2004)

    Article  CAS  Google Scholar 

  14. Gronert, S.: Gas phase studies of the competition between substitution and elimination reactions. Acc. Chem. Res. 36, 848–857 (2003)

    Article  CAS  Google Scholar 

  15. Nettey, S., Swift, C.A., Joviliano, R., Noin, D.O., Gronert, S.: The impact of substituents on the transition states of S(N)2 and E2 reactions in aliphatic and vinylic systems: remarkably facile vinylic eliminations. J. Am. Chem. Soc. 134, 9303–9310 (2012)

    Article  CAS  Google Scholar 

  16. Gronert, S.: Coulomb repulsion in multiply charged ions: a computational study of the effective dielectric constants of organic spacer groups. Int. J. Mass Spectrom. 185, 351–357 (1999)

    Article  Google Scholar 

  17. Gronert, S.: Quadrupole ion trap studies of fundamental organic reactions. Mass Spectrom. Rev. 24, 100–120 (2005)

    Article  CAS  Google Scholar 

  18. Gronert, S.: Estimation of effective ion temperatures in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 9, 845–848 (1998)

    Article  CAS  Google Scholar 

  19. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03 Revision B04. Gaussian Inc, Pittsburgh (2003)

    Google Scholar 

  20. Pople, J.A., Scott, A.P., Wong, M.W., Radom, L.: Scaling factors for obtaining fundamental vibrational frequencies and zero-point energies from HF/6-31G* and MP2/6-31G* harmonic frequencies. Isr. J. Chem. 33, 345–350 (1993)

    Article  CAS  Google Scholar 

  21. Bartmess, J.E.: In: Nist Standard Reference Database Number 69; Mallard, W.G., Linstrom, P.J., Eds. National Institute of Standards and Technology (available at: http://webbook.nist.gov): Gaithersburg, MD (2013). Accessed 1 June 2013

  22. Su, T., Bowers, M.T.: In: Bowers, M.T. (ed.) Gas Phase Ion Chemistry, Vol. 1, pp. 83–118. Academic Press, New York (1979)

    Chapter  Google Scholar 

  23. Gronert, S., Fong, L.M.: Gas phase reactions of dianions. 2. The effect of a second charge on S(N)2 potential energy surfaces: an ab initio study. Int. J. Mass Spectrom. 192, 185–190 (1999)

    Article  CAS  Google Scholar 

  24. Bunnett, J.F., Garbisch, E.W., Pruitt, K.M.: The “Element Effect” as a criterion of mechanism in activated aromatic nucleophilic substitution reactions. J. Am. Chem. Soc. 78, 385–391 (1957)

    Article  Google Scholar 

  25. Senger, N.A., Bo, B., Cheng, Q., Keeffe, J.R., Gronert, S., Wu, W.M.: The element effect revisited: factors determining leaving group ability in activated nucleophilic aromatic substitution reactions. J. Org. Chem. 77, 9535–9540 (2012)

    Article  CAS  Google Scholar 

  26. Kato, S., DePuy, C.H., Gronert, S., Bierbaum, V.M.: Gas phase hydrogen/deuterium exchange reactions of fluorophenyl anions. J. Am. Soc. Mass Spectrom. 10, 840–847 (1999)

    Article  CAS  Google Scholar 

  27. Manikandan, P., Zhang, J.X., Hase, W.L.: Chemical dynamics simulations of X + CH3Y => XCH3 + Y gas-phase S(N)2 nucleophilic substitution reactions. Nonstatistical dynamics and nontraditional reaction mechanisms. J. Phys. Chem. A 116, 3061–3080 (2012)

    Article  CAS  Google Scholar 

  28. Craig, S.L., Zhong, M.L., Brauman, J.I.: Translational energy dependence and potential energy surfaces of gas phase S(N)2 and addition-elimination reactions. J. Am. Chem. Soc. 121, 11790–11797 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Gronert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eanes, A.D., Noin, D.O., Kebede, M.K. et al. Nucleophilic Aromatic Substitution with Dianions: Reactions Driven by the Release of Coulomb Repulsion. J. Am. Soc. Mass Spectrom. 25, 10–17 (2014). https://doi.org/10.1007/s13361-013-0758-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0758-y

Key words

Navigation