Skip to main content
Log in

Structural Analysis of Guanylyl Cyclase-Activating Protein-2 (GCAP-2) Homodimer by Stable Isotope-Labeling, Chemical Cross-Linking, and Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The topology of the GCAP-2 homodimer was investigated by chemical cross-linking and high resolution mass spectrometry. Complementary conducted size-exclusion chromatography and analytical ultracentrifugation studies indicated that GCAP-2 forms a homodimer both in the absence and in the presence of Ca2+. In-depth MS and MS/MS analysis of the cross-linked products was aided by 15N-labeled GCAP-2. The use of isotope-labeled protein delivered reliable structural information on the GCAP-2 homodimer, enabling an unambiguous discrimination between cross-links within one monomer (intramolecular) or between two subunits (intermolecular). The limited number of cross-links obtained in the Ca2+-bound state allowed us to deduce a defined homodimeric GCAP-2 structure by a docking and molecular dynamics approach. In the Ca2+-free state, GCAP-2 is more flexible as indicated by the higher number of cross-links. We consider stable isotope-labeling to be indispensable for deriving reliable structural information from chemical cross-linking data of multi-subunit protein assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Young, M.M., Tang, N., Hempel, J.C., Oshiro, C.M., Taylor, E.W., Kuntz, I.D., Gibson, B.W., Dollinger, G.: High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 97, 5802–5806 (2000)

    Article  CAS  Google Scholar 

  2. Back, J.W., de Jong, L., Muijsers, A.O., de Koster, C.G.: Chemical cross-linking and mass spectrometry for protein structural modeling. J. Mol. Biol. 331, 303–313 (2003)

    Article  CAS  Google Scholar 

  3. Fabris, D., Yu, E.T.: Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D. J. Mass Spectrom. 45, 841–860 (2010)

    Article  CAS  Google Scholar 

  4. Sinz, A.: Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom. Rev. 25, 663–682 (2006)

    Article  CAS  Google Scholar 

  5. Sinz, A.: Investigation of protein–protein interactions in living cells by chemical crosslinking and mass spectrometry. Anal. Bioanal. Chem. 397, 3433–3440 (2010)

    Article  CAS  Google Scholar 

  6. Lee, Y.J.: Mass spectrometric analysis of cross-linking sites for the structure of proteins and protein complexes. Mol. Biosyst. 4, 816–823 (2008)

    Article  CAS  Google Scholar 

  7. Zhang, H.Z., Tang, X.T., Munske, G.R., Tolic, N., Anderson, G.A., Bruce, J.E.: Identification of protein–protein interactions and topologies in living cells with chemical cross-linking and mass spectrometry. Mol. Cell. Proteom. 8, 409–420 (2009)

    Article  CAS  Google Scholar 

  8. Rappsilber, J.: The beginning of a beautiful friendship: Cross-linking/mass spectrometry and modeling of proteins and multi-protein complexes. J. Struct. Biol. 173, 530–540 (2011)

    Article  CAS  Google Scholar 

  9. Petrotchenko, E.V., Borchers, C.H.: Cross-linking combined with mass spectrometry for structural proteomics. Mass Spectrom. Rev. 29, 862–876 (2010)

    Article  CAS  Google Scholar 

  10. Müller, D.R., Schindler, P., Towbin, H., Wirth, U., Voshol, H., Hoving, S., Steinmetz, M.O.: Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal. Chem. 73, 1927–1934 (2001)

    Article  Google Scholar 

  11. Schmidt, A., Kalkhof, S., Ihling, C., Cooper, D.M.F., Sinz, A.: Mapping protein interfaces by chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: application to a calmodulin/adenylyl cyclase 8 peptide complex. Eur. J. Mass Spectrom. 11, 525–534 (2005)

    Article  CAS  Google Scholar 

  12. Merkley, E.D., Baker, E.S., Crowell, K.L., Orton, D.J., Taverner, T., Ansong, C., Ibrahim, Y.M., Burnet, M.C., Cort, J.R., Anderson, G.A., Smith, R.D., Adkins, J.N.: Mixed-isotope labeling with LC-IMS-MS for characterization of protein–protein interactions by chemical cross-linking. J. Am. Soc. Mass Spectrom. 24, 444–449 (2013)

    Article  CAS  Google Scholar 

  13. Taverner, T., Hall, N.E., O’Hair, R.A.J., Simpson, R.J.: Characterization of an antagonist interleukin-6 dimer by stable isotope labeling, cross-linking, and mass spectrometry. J. Biol. Chem. 277, 46487–46492 (2002)

    Article  CAS  Google Scholar 

  14. Olshevskaya, E.V., Hughes, R.E., Hurley, J.B., Dizhoor, A.M.: Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J. Biol. Chem. 272, 14327–14333 (1997)

    Article  CAS  Google Scholar 

  15. Dizhoor, A.M., Olshevskaya, E.V., Henzel, W.J., Wong, S.C., Stults, J.T., Ankoudinova, I., Hurley, J.B.: Cloning, sequencing, and expression of a 24-kDa Ca2+-binding protein activating photo receptor guanylyl cyclase. J. Biol. Chem. 270, 25200–25206 (1995)

    Article  CAS  Google Scholar 

  16. Laura, R.P., Dizhoor, A.M., Hurley, J.B.: The membrane guanylyl cyclase, retinal guanylyl cyclase-1, is activated through its intracellular domain. J. Biol. Chem. 271, 11646–11651 (1996)

    Article  CAS  Google Scholar 

  17. Sharma, R.K.: Membrane guanylate cyclase is a beautiful signal transduction machine: overview. Mol. Cell. Biochem. 334, 3–36 (2010)

    Article  CAS  Google Scholar 

  18. Wilson, E.M., Chinkers, M.: Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34, 4696–4701 (1995)

    Article  CAS  Google Scholar 

  19. Yang, R.B., Garbers, D.L.: Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J. Biol. Chem. 272, 13738–13742 (1997)

    Article  CAS  Google Scholar 

  20. Olshevskaya, E.V., Ermilov, A.N., Dizhoor, A.M.: Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation. J. Biol. Chem. 274, 25583–25587 (1999)

    Article  CAS  Google Scholar 

  21. Ames, J.B., Dizhoor, A.M., Ikura, M., Palczewski, K., Stryer, L.: Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J. Biol. Chem. 274, 19329–19337 (1999)

    Article  CAS  Google Scholar 

  22. Schröder, T., Lilie, H., Lange, C.: The myristoylation of guanylate cyclase-activating protein-2 causes an increase in thermodynamic stability in the presence but not in the absence of Ca2+. Protein Sci. 20, 1155–1165 (2011)

    Article  Google Scholar 

  23. Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G.M., Carnemolla, B., Orecchia, P., Zardi, L., Righetti, P.G.: Blue silver: a very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis 25, 1327–1333 (2004)

    Article  CAS  Google Scholar 

  24. Jensen, O.N., Shevchenko, A., Mann, M.: Protein analysis by mass spectrometry. In: Creighton, T.E. (ed.) In Protein Structure—A Practical Approach, 2nd ed., pp. 29–57. Oxford University Press, Oxford (1997)

  25. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M.: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006)

    Article  CAS  Google Scholar 

  26. Götze, M., Pettelkau, J., Schaks, S., Bosse, K., Ihling, C., Krauth, F., Fritzsche, R., Kühn, U., Sinz, A.: StavroX—a software for analyzing crosslinked products in protein interaction studies. J. Am. Soc. Mass. Spectrom. 23, 76–87 (2012)

    Article  Google Scholar 

  27. Kalkhof, S., Sinz, A.: Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Anal. Bioanal. Chem. 392, 305–312 (2008)

    Article  CAS  Google Scholar 

  28. Luther, M.A., Cai, G.Z., Lee, J.C.: Thermodynamics of dimer and tetramer formations in rabbit muscle phosphofructokinase. Biochemistry 25, 7931–7937 (1986)

    Article  CAS  Google Scholar 

  29. Berjanskii, M., Zhou, J.J., Liang, Y.J., Lin, G.H., Wishart, D.S.: Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures. J. Biomol. NMR 53, 167–180 (2012)

    Article  CAS  Google Scholar 

  30. Molecular Operating Environment (MOE), Chemical Computing Group Inc.: Montreal, Canada (2010)

  31. Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M.D., Ritchie, D.W.: HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res. 38, W445–W449 (2010)

    Article  CAS  Google Scholar 

  32. Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J.: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20, 45–50 (2004)

    Article  CAS  Google Scholar 

  33. Tovchigrechko, A., Vakser, I.A.: GRAMM-X public web server for protein–protein docking. Nucleic Acids Res. 34, W310–W314 (2006)

    Article  CAS  Google Scholar 

  34. Pierce, B.G., Hourai, Y., Weng, Z.P.: Accelerating protein docking in ZDOCK using an advanced 3D convolution library. Plos One 6, (9): e24657 (2011). doi:10.1371/journal.pone.0024657

  35. Torchala, M., Moal, I.H., Chaleil, R.A.G., Fernandez-Recio, J., Bates, P.A.: SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29, 807–809 (2013)

    Article  CAS  Google Scholar 

  36. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005)

    Article  CAS  Google Scholar 

  37. De Vries, S.J., van Dijk, M., Bonvin, A.: The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883–897 (2010)

    Article  Google Scholar 

  38. Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Hayik, S., Roitberg, A., Seabra, G., Swails, J., Goetz, A.W., Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Wolf, R.M., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.J., Cui, G., Roe, D.R., Mathews, D.H., Seetin, M.G., Salomon-Ferrer, R., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P.A.: AMBER 12. University of California, San Francisco (2012)

    Google Scholar 

  39. Mädler, S., Bich, C., Touboul, D., Zenobi, R.: Chemical cross-linking with NHS esters: a systematic study on amino acid reactivities. J. Mass Spectrom. 44, 694–706 (2009)

    Article  Google Scholar 

  40. Pettelkau, J., Schröder, T., Ihling, C.H., Olausson, B.E.S., Kölbel, K., Lange, C., Sinz, A.: Structural insights into retinal guanylylcyclase-GCAP-2 interaction determined by cross-linking and mass spectrometry. Biochemistry 51, 4932–4949 (2012)

    Article  CAS  Google Scholar 

  41. Chen, Z.A., Jawhari, A., Fischer, L., Buchen, C., Tahir, S., Kamenski, T., Rasmussen, M., Lariviere, L., Bukowski-Wills, J.C., Nilges, M., Cramer, P., Rappsilber, J.: Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J. 29, 717–726 (2010)

    Article  CAS  Google Scholar 

  42. Green, N.S., Reisler, E., Houk, K.N.: Quantitative evaluation of the lengths of homobifunctional protein cross-linking reagents used as molecular rulers. Protein Sci. 10, 1293–1304 (2001)

    Article  CAS  Google Scholar 

  43. Schilling, B., Row, R.H., Gibson, B.W., Guo, X., Young, M.M.: MS2Assign, automated assignment and nomenclature of tandem mass spectra of chemically crosslinked peptides. J. Am. Soc. Mass. Spectrom. 14, 834–850 (2003)

    Article  CAS  Google Scholar 

  44. Santos, L.F.A., Iglesias, A.H., Gozzo, F.C.: Fragmentation features of intermolecular cross-linked peptides using N-hydroxy-succinimide esters by MALDI- and ESI-MS/MS for use in structural proteomics. J. Mass Spectrom. 46, 742–750 (2011)

    Article  CAS  Google Scholar 

  45. Kalkhof, S., Haehn, S., Paulsson, M., Smyth, N., Meiler, J., Sinz, A.: Computational modeling of laminin N-terminal domains using sparse distance constraints from disulfide bonds and chemical cross-linking. Proteins 78, 3409–3427 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, project Si 867/13-1) and the region of Sachsen-Anhalt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Sinz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettelkau, J., Thondorf, I., Theisgen, S. et al. Structural Analysis of Guanylyl Cyclase-Activating Protein-2 (GCAP-2) Homodimer by Stable Isotope-Labeling, Chemical Cross-Linking, and Mass Spectrometry. J. Am. Soc. Mass Spectrom. 24, 1969–1979 (2013). https://doi.org/10.1007/s13361-013-0734-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0734-6

Key words

Navigation