Skip to main content
Log in

Fragmentation Reactions of Methionine-Containing Protonated Octapeptides and Fragment Ions Therefrom: An Energy-Resolved Study

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The fragmentation reactions of the MH+ ions as well as the b7, a7, and a7* ions derived therefrom have been studied in detail for the octapeptides MAAAAAAA, AAMAAAAA, AAAAMAAA, and AAAAAAMA. Ionization was by electrospray using a QqToF mass spectrometer, which allowed a study of the evolution of the fragmentation channels as a function of the collision energy. Not surprisingly, the product ion mass spectra for the b7 ions are independent of the original precursor sequence, indicating macrocyclization and reopening to the same mixture of protonated oxazolones prior to fragmentation. The results show that this sequence scrambling results in a distinct preference to place the Met residue in the C-terminal position of the protonated oxazolones. The a7 and a7* ions also produce product ion mass spectra independent of the original peptide sequence. The results for the a7 ions indicate that fragmentation occurs primarily from an amide structure analogous to that observed for a4 ions (Bythell et al. in J Am Chem Soc 132:14766–14779, 2010). Clearly, the rearrangement reaction they have proposed applies equally well to an ions as large as a7. The major fragmentation modes of the MH+ ions at low collision energies produce b7, b6, and b5 ions. As the collision energy is increased further fragmentation of these primary products produces, in part, non-direct sequence ions, which become prominent at lower m/z values, particularly for the peptides with the Met residue near the N-terminus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Scheme 2
Figure 3
Scheme 3
Figure 4
Scheme 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Larsen, M.R., Roepstorff, P.: Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis. Fresenius J. Anal. Chem. 366, 677–690 (2000)

    Article  CAS  Google Scholar 

  2. Aebersold, R., Goodlett, D.R.: Mass spectrometry in proteomics. Chem. Rev. 101, 269–295 (2001)

    Article  CAS  Google Scholar 

  3. Medzihradszky, K.F.: Peptide sequence analysis. Methods Enzymol. 402, 209–244 (2005)

    Article  CAS  Google Scholar 

  4. Paizs, B., Suhai, S.: Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508–548 (2005)

    Article  CAS  Google Scholar 

  5. Roepstorff, P., Fohlman, J.: Proposals for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984)

    Article  CAS  Google Scholar 

  6. Biemann, K.: Contributions of mass spectrometry to peptide and protein structure. Biomed. Environ. Mass Spectrom. 16, 99–111 (1988)

    Article  CAS  Google Scholar 

  7. Mueller, D.R., Eckersley, M., Richter, W.: Hydrogen transfer reactions in the formation of “Y+2” sequence ions from protonated peptides. Org. Mass Spectrom. 23, 217–222 (1988)

    Article  CAS  Google Scholar 

  8. Cordero, M.M., Houser, J.J., Wesdemiotis, C.: The neutral products formed during backbone cleavage of protonated peptides in tandem mass spectrometry. Anal. Chem. 65, 1594–1601 (1993)

    Article  CAS  Google Scholar 

  9. Harrison, A.G.: To b or not to b. The ongoing saga of peptide b ions. Mass Spectrom. Rev. 28, 640–654 (2009)

    Article  CAS  Google Scholar 

  10. Farrugia, J.M., Taverner, T., O’Hair, R.A.J.: Side-chain involvement in the fragmentation reactions of the protonated methyl esters of histidine and its peptides. Int. J. Mass Spectrom. 209, 99–112 (2001)

    Article  CAS  Google Scholar 

  11. Perkins, B.R., Chamot-Rooke, J., Yoon, S.H., Gucinski, A.C., Somogyi, A., Wysocki, V.H.: Evidence of diketopiperazine and oxazolone structures for HA b2 + ion. J. Am. Chem. Soc. 131, 17528–17529 (2009)

    Article  CAS  Google Scholar 

  12. Zou, S., Oomens, J., Polfer, N.C.: Competition between diketopiperazine and oxazolone formation in water loss products from protonated ArgGly and GlyArg. Int. J. Mass Spectrom. 316/318, 12–17 (2012)

    Article  Google Scholar 

  13. Yague, J., Paradela, A., Ramos, M., Ogueta, S., Marina, A., Barabona, F., Lopez de Castro, J.A., Vazquez, J.: Peptide rearrangement during ion trap fragmentation. Added complexity to MS/MS spectra. Anal. Chem. 75, 1524–1535 (2003)

    Article  Google Scholar 

  14. Harrison, A.G., Young, A.B., Bleiholder, C., Suhai, S., Paizs, B.: Scrambling of sequence information in collision-induced dissociation of peptides. J. Am. Chem. Soc. 128, 10364–10365 (2006)

    Article  CAS  Google Scholar 

  15. Jia, C., Qi, W., He, Z.: Cyclization reactions of peptide fragment ions during multistage collisionally activated decomposition. An inducement to lose internal amino acid residues. J. Am. Soc. Mass Spectrom. 18, 663–678 (2007)

    Article  CAS  Google Scholar 

  16. Mouls, L., Aubagnac, J.L., Martinez, J., Enjalbal, C.: Low energy peptide fragmentation in an ESI-Q-TOF type mass spectrometer. J. Proteome Res. 6, 1378–1391 (2007)

    Article  CAS  Google Scholar 

  17. Bleiholder, C., Osburn, S., Williams, T.D., Suhai, S., Van Stipdonk, M., Harrison, A.G., Paizs, B.: Sequence scrambling pathways of protonated peptides. J. Am. Chem. Soc. 130, 17774–17789 (2008)

    Article  CAS  Google Scholar 

  18. Harrison, A.G.: Peptide sequence scrambling through cyclization of b5 ions. J. Am. Soc. Mass Spectrom. 19, 1776–1780 (2008)

    Article  CAS  Google Scholar 

  19. Harrison, A.G.: Cyclization of peptide b9 ions. J. Am. Soc. Mass Spectrom. 20, 2248–2253 (2009)

    Article  CAS  Google Scholar 

  20. Erlekam, U., Bythell, B.J., Van Stipdonk, M., Paizs, B., Maître, P.: Infrared spectroscopy of protonated peptides: direct evidence for macrocyclic structure of b5 ions. J. Am. Chem. Soc. 131, 11503–11508 (2009)

    Article  CAS  Google Scholar 

  21. Molesworth, S., Osburn, S., Van Stipdonk, M.: Influence of size on apparent scrambling of sequence during CID of b-type ions. J. Am. Soc. Mass Spectrom. 20, 2174–2181 (2009)

    Article  CAS  Google Scholar 

  22. Fattahi, A., Zekavat, B., Solouki, T.: H/D exchange kinetics: evidence for formation of different b fragment conformers/isomers during gas-phase peptide sequencing. J. Am. Soc. Mass Spectrom. 21, 358–369 (2010)

    Article  CAS  Google Scholar 

  23. Molesworth, S., Osburn, S., Van Stipdonk, M.: Influence of amino acid side chains on apparent selective opening of cyclic b5 ions. J. Am. Soc. Mass Spectrom. 21, 1028–1036 (2010)

    Article  CAS  Google Scholar 

  24. Bythell, B.J., Knapp-Mohammady, M., Paizs, B., Harrison, A.G.: Effect of the His residue on the cyclization of b ions. J. Am. Soc. Mass Spectrom. 21, 1352–1363 (2010)

    Article  CAS  Google Scholar 

  25. Atik, A.E., Yalcin, T.: A systematic study of acidic peptides for b-type sequence scrambling. J. Am. Soc. Mass Spectrom. 22, 38–48 (2011)

    Article  CAS  Google Scholar 

  26. Harrison, A.G.: Fragmentation reactions of b5 and a5 ions containing proline—the structures of a5 ions. J. Am. Soc. Mass Spectrom. 23, 594–601 (2012)

    Article  CAS  Google Scholar 

  27. Tasoglu, C., Gorgulu, G., Yalcin, T.: Investigation of peptide size, residue position, neighbour amino acid and side chain effects on macrocyclization of bn (n = 5–7) ions. Int. J. Mass Spectrom. 316/318, 108–116 (2012)

    Article  Google Scholar 

  28. Saminathan, I.S., Wang, X.S., Guo, Y., Krakovska, O., Voison, S., Hopkinson, A.C., Siu, K.W.M.: The extent and effects of peptide sequence scrambling via formation of macrocycylic b ions in model peptides. J. Am. Soc. Mass Spectrom. 21, 2085–2094 (2010)

    Article  CAS  Google Scholar 

  29. Perkins, D.S., Pappin, D.J., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999)

    Article  CAS  Google Scholar 

  30. Goloboroko, A.A., Gorshkov, M.V., Good, D.M., Zubarev, R.A.: Sequence scrambling in shotgun proteomics is negligible. J. Am. Soc. Mass Spectrom. 22, 1121–1124 (2011)

    Article  Google Scholar 

  31. Yu, L., Tan, Y., Tsai, Y., Goodlett, D.R., Polfer, N.C.: On the relevance of peptide sequence permutations in shotgun proteomics. J. Proteome Res. 10, 2409–2416 (2011)

    Article  CAS  Google Scholar 

  32. Scherl, A., Shaffer, S.A., Taylor, G.K., Hernandez, P., Appel, R.D., Binz, P.-A., Goodlett, D.R.: On the benefits of acquiring peptide fragment ions at high measured mass accuracy. J. Am. Soc. Mass Spectrom. 19, 891–901 (2008)

    Article  CAS  Google Scholar 

  33. Michalski, A., Neuhauser, N., Cox, J., Mann, M.: A systematic investigation into the nature of tryptic HCD spectra. J. Prot. Res. 11, 5478–5491 (2012)

    Article  Google Scholar 

  34. Wabnitz, P.A., Bowie, J.H., Wallace, J.C., Tyler, M.J.: Peptides from the skin glands of the Australian buzzing tree frog Littoria electra. Comparison with the skin peptides of the red tree frog Littoria rubella. Aust. J. Chem. 52, 639–645 (1999)

    Article  CAS  Google Scholar 

  35. Mouls, L., Subra, G., Aubagnac, J.-L., Martinez, J., Enjalbal, C.: Tandem mass spectrometry of amidated peptides. J. Mass Spectrom. 41, 1470–1483 (2006)

    Article  CAS  Google Scholar 

  36. Langsdorf, M., Ghassenpour, A., Römpp, A., Spengler, B.: Characterization of a peptide family from the skin secretions of the middle east tree frog Hyla savignyi by composition-based de novo sequencing. Rapid Commun. Mass Spectrom. 24, 2885–2899 (2010)

    Article  CAS  Google Scholar 

  37. Samigna, T.Y., Gorshkov, V.V., Artemenko, K.A., Kovalev, S.V., Ogourtsov, S.V., Zubarev, R.A., Lebedev, A.T.: Novel natural peptides from Hydra arborea schelkownikowi skin secretion. Rapid Commun. Mass Spectrom. 24, 1749–1754 (2010)

    Article  Google Scholar 

  38. Yalcin, T., Khouw, C., Csizmadia, I.G., Peterson, M.R., Harrison, A.G.: Why are b ions stable species in peptide mass spectra. J. Am. Soc. Mass Spectrom. 6, 1165–1174 (1995)

    Article  CAS  Google Scholar 

  39. Yalcin, T., Csizmadia, I.G., Peterson, M.R., Harrison, A.G.: The structures and fragmentation of B n (n ≥ 3) ions in peptide mass spectra. J. Am. Soc. Mass Spectrom. 7, 233–242 (1996)

    Article  CAS  Google Scholar 

  40. Ambihapathy, K., Yalcin, T., Leung, H.-W., Harrison, A.G.: Pathways to immonium ions in the fragmentation of protonated peptides. J. Mass Spectrom. 32, 209–215 (1997)

    Article  CAS  Google Scholar 

  41. Vachet, R.W., Kay, K.L., Glish, G.L.: Origin of product ions in the MS/MS spectra of peptides in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 9, 341–344 (1998)

    Article  CAS  Google Scholar 

  42. El Aribi, H., Rodriquez, C.F., Almeida, D.R.P., Ling, Y., Mak, W.W.-N., Hopkinson, A.C., Siu, K.W.M.: Elucidation of fragmentation mechanisms of protonated peptides and their products: a case study on glycylglycylglycine using density functional theory and threshold collision-induced dissociation. J. Am. Chem. Soc. 125, 9229–9236 (2003)

    Article  Google Scholar 

  43. Verkerk, U.H., Siu, C.-K., Steill, J.D., El Aribi, H., Zhao, J., Rodriquez, C.F., Oomens, J., Hopkinson, A.C., Siu, K.W.M.: The a2 ion derived from triglycine: an N1-protonated 4-imidazolidinone. J. Phys. Chem. Lett. 1, 868–872 (2010)

    Article  CAS  Google Scholar 

  44. Bythell, B.J., Maître, P., Paizs, B.: Cyclization and rearrangement reactions of an fragment ions of protonated peptides. J. Am. Chem. Soc. 132, 14766–14779 (2010)

    Article  CAS  Google Scholar 

  45. Savitski, M.M., Fälth, M., Fung, Y.M.E., Adams, C.M., Zubarev, R.A.: Bifurcating fragmentation behavior of gas-phase tryptic peptide dications in collisional activation. J. Am. Soc. Mass Spectrom. 19, 1755–1763 (2008)

    Article  CAS  Google Scholar 

  46. Allen, J.M., Racine, A.W., Berman, A.M., Johnson, J.J., Bythell, B.J., Paizs, B., Glish, G.L.: Why are a3 ions rarely observed? J. Am. Soc. Mass Spectrom. 19, 1764–1770 (2008)

    Article  CAS  Google Scholar 

  47. Paizs, B., Bythell, B.J., Maître, P.: Rearrangement pathways of the a4 ion of protonated YGGFL characterized by IR spectroscopy and modeling. J. Am. Soc. Mass Spectrom. 23, 664–675 (2012)

    Article  CAS  Google Scholar 

  48. Wassermann, T.N., Boyarkin, O.V., Paizs, B., Rizzo, T.R.: Conformation-specific spectroscopy of peptide fragment ions in a low-temperature ion trap. J. Am. Soc. Mass Spectrom. 23, 1029–1045 (2012)

    Article  CAS  Google Scholar 

  49. Vachet, R.W., Bishop, B.M., Erickson, B.W., Glish, G.L.: Novel peptide dissociation: gas-phase intramolecular rearrangement of internal amino acid residues. J. Am. Chem. Soc. 119, 5481–5488 (1997)

    Article  CAS  Google Scholar 

  50. Harrison, A.G., Young, A.B.: Fragmentation of protonated oligoalanines. Amide bond cleavage and beyond. J. Am. Soc. Mass Spectrom. 15, 1810–1819 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author greatly appreciates the continued financial support of the Natural Sciences and Engineering Research Council (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex G. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, A.G. Fragmentation Reactions of Methionine-Containing Protonated Octapeptides and Fragment Ions Therefrom: An Energy-Resolved Study. J. Am. Soc. Mass Spectrom. 24, 1555–1564 (2013). https://doi.org/10.1007/s13361-013-0706-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0706-x

Key words

Navigation