Skip to main content
Log in

Activated Ion ETD Performed in a Modified Collision Cell on a Hybrid QLT-Oribtrap Mass Spectrometer

  • Focus: Electron Transfer Dissociation: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

We describe the implementation and characterization of activated ion electron transfer dissociation (AI-ETD) on a hybrid QLT-Orbitrap mass spectrometer. AI-ETD was performed using a collision cell that was modified to enable ETD reactions, in addition to normal collisional activation. The instrument manifold was modified to enable irradiation of ions along the axis of this modified cell with IR photons from a CO2 laser. Laser power settings were optimized for both charge (z) and mass to charge (m/z) and the instrument control firmware was updated to allow for automated adjustments to the level of irradiation. This implementation of AI-ETD yielded 1.6-fold more unique identifications than ETD in an nLC-MS/MS analysis of tryptic yeast peptides. Furthermore, we investigated the application of AI-ETD on large scale analysis of phosphopeptides, where laser power aids ETD, but can produce b- and y-type ions because of the phosphoryl moiety’s high IR adsorption. nLC-MS/MS analysis of phosphopeptides derived from human embryonic stem cells using AI-ETD yielded 2.4-fold more unique identifications than ETD alone, demonstrating a promising advance in ETD sequencing of PTM containing peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101(26), 9528–9533 (2004)

    Article  CAS  Google Scholar 

  2. Coon, J.J., Syka, J.E.P., Schwartz, J.C., Shabanowitz, J., Hunt, D.F.: Anion dependence in the partitioning between proton and electron transfer in ion/ion reactions. Int. J. Mass Spectrom. 236(1/3), 33–42 (2004)

    CAS  Google Scholar 

  3. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120(13), 3265–3266 (1998)

    Article  CAS  Google Scholar 

  4. Chalkley, R.J., Thalhammer, A., Schoepfer, R., Burlingame, A.L.: Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc. Natl. Acad. Sci. U. S. A. 106(22), 8894–8899 (2009)

    Article  CAS  Google Scholar 

  5. Khidekel, N., Ficarro, S.B., Clark, P.M., Bryan, M.C., Swaney, D.L., Rexach, J.E., Sun, Y.E., Coon, J.J., Peters, E.C., Hsieh-Wilson, L.C.: Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat. Chem. Biol. 3(6), 339–348 (2007)

    Article  CAS  Google Scholar 

  6. Hogan, J.M., Pitteri, S.J., Chrisman, P.A., McLuckey, S.A.: Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J. Proteome Res. 4(2), 628–632 (2005)

    Article  CAS  Google Scholar 

  7. Darula, Z., Chalkley, R.J., Baker, P., Burlingame, A.L., Medzihradszky, K.F.: Mass spectrometric analysis, automated identification, and complete annotation of O-linked glycopeptides. Eur. J. Mass Spectrom. 16(3), 421–428 (2010)

    Article  CAS  Google Scholar 

  8. Scott, N.E., Parker, B.L., Connolly, A.M., Paulech, J., Edwards, A.V.G., Crossett, B., Falconer, L., Kolarich, D., Djordjevic, S.P., Hojrup, P., Packer, N.H., Larsen, M.R., Cordwell, S.J.: Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation ms applied to the N-linked glycoproteome of Campylobacter jejuni. Mol. Cell. Proteomics 10(2), (2011)

  9. Zee, B.M., Garcia, B.A.: Electron transfer dissociation facilitates sequencing of adenosine diphosphate-ribosylated peptides. Anal. Chem. 82(1), 28–31 (2010)

    Article  CAS  Google Scholar 

  10. Messner, S., Altmeyer, M., Zhao, H.T., Pozivil, A., Roschitzki, B., Gehrig, P., Rutishauser, D., Huang, D.Z., Caflisch, A., Hottiger, M.O.: PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res. 38(19), 6350–6362 (2010)

    Article  CAS  Google Scholar 

  11. Brumbaugh, J., Hou, Z., Russell, J.D., Howden, S.E., Yu, P., Ledvina, A.R., Coon, J.J., Thomson, J.A.: Phosphorylation regulates human OCT4. Proc. Natl. Acad. Sci. U. S. A. 109(19), 7162–7168 (2012)

    Article  CAS  Google Scholar 

  12. Phanstiel, D.H., Brumbaugh, J., Wenger, C.D., Tian, S.L., Probasco, M.D., Bailey, D.J., Swaney, D.L., Tervo, M.A., Bolin, J.M., Ruotti, V., Stewart, R., Thomson, J.A., Coon, J.J.: Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat. Methods 8(10), 821–U884 (2011)

    Article  CAS  Google Scholar 

  13. Rose, C.M., Venkateshwaran, M., Volkening, J.D., Grimsrud, P.A., Maeda, J., Bailey, D.J., Park, K., Howes-Podoll, M., den Os, D., Yeun, L.H., Westphall, M.S., Sussman, M.R., Ané, J.-M., Coon, J.J.: Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol. Cell. Proteomics 11(9), 724–744 (2012)

    Article  CAS  Google Scholar 

  14. Swaney, D.L., McAlister, G.C., Wirtala, M., Schwartz, J.C., Syka, J.E.P., Coon, J.J.: Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal. Chem. 79(2), 477–485 (2007)

    Article  CAS  Google Scholar 

  15. Ledvina, A.R., McAlister, G.C., Gardner, M.W., Smith, S.I., Madsen, J.A., Schwartz, J.C., Stafford, G.C., Syka, J.E.P., Brodbelt, J.S., Coon, J.J.: Infrared photoactivation reduces peptide folding and hydrogen-atom migration following ETD tandem mass spectrometry. Angew. Chem. Int. Ed. 48(45), 8526–8528 (2009)

    Article  CAS  Google Scholar 

  16. Ben Hamidane, H., Chiappe, D., Hartmer, R., Vorobyev, A., Moniatte, M., Tsybin, Y.O.: Electron capture and transfer dissociation: Peptide structure analysis at different ion internal energy levels. J. Am. Soc. Mass Spectrom. 20(4), 567–575 (2009)

    Article  CAS  Google Scholar 

  17. Good, D.M., Wirtala, M., McAlister, G.C., Coon, J.J.: Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics 6(11), 1942–1951 (2007)

    Article  CAS  Google Scholar 

  18. Han, H.L., Xia, Y., McLuckey, S.A.: Beam-type collisional activation of polypeptide cations that survive ion/ion electron transfer. Rapid Commun. Mass Spectrom. 21(10), 1567–1573 (2007)

    Article  CAS  Google Scholar 

  19. Horn, D.M., Ge, Y., McLafferty, F.W.: Activated ion electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins. Anal. Chem. 72(20), 4778–4784 (2000)

    Article  CAS  Google Scholar 

  20. Cooper, H.J., Hakansson, K., Marshall, A.G.: The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 24(2), 201–222 (2005)

    Article  CAS  Google Scholar 

  21. Oh, H., Breuker, K., Sze, S.K., Ge, Y., Carpenter, B.K., McLafferty, F.W.: Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 99(25), 15863–15868 (2002)

    Article  CAS  Google Scholar 

  22. Oh, H.B., McLafferty, F.W.: A variety of activation methods employed in "activated-ion" electron capture dissociation mass spectrometry: A test against bovine ubiquitin 7+ions. Bull. Korean Chem. Soc. 27(3), 389–394 (2006)

    Article  CAS  Google Scholar 

  23. Senko, M.W., Speir, J.P., McLafferty, F.W.: Collisional activation of large multiply-charged ions using Fourier-transform mass-spectrometry. Anal. Chem. 66(18), 2801–2808 (1994)

    Article  CAS  Google Scholar 

  24. Breuker, K., Oh, H.B., Horn, D.M., Cerda, B.A., McLafferty, F.W.: Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J. Am. Chem. Soc. 124(22), 6407–6420 (2002)

    Article  CAS  Google Scholar 

  25. Horn, D.M., Breuker, K., Frank, A.J., McLafferty, F.W.: Kinetic intermediates in the folding of gaseous protein ions characterized by electron capture dissociation mass spectrometry. J. Am. Chem. Soc. 123(40), 9792–9799 (2001)

    Article  CAS  Google Scholar 

  26. Pitteri, S.J., Chrisman, P.A., McLuckey, S.A.: Electron-transfer ion/ion reactions of doubly protonated peptides: Effect of elevated bath gas temperature. Anal. Chem. 77(17), 5662–5669 (2001)

    Article  Google Scholar 

  27. O'Connor, P.B., Lin, C., Cournoyer, J.J., Pittman, J.L., Belyayev, M., Budnik, B.A.: Long-lived electron capture dissociation product ions experience radical migration via hydrogen abstraction. J. Am. Soc. Mass Spectrom. 17(4), 576–585 (2001)

    Article  Google Scholar 

  28. Ledvina, A.R., Beauchene, N.A., McAlister, G.C., Syka, J.E.P., Schwartz, J.C., Griep-Raming, J., Westphall, M.S., Coon, J.J.: Activated-ion electron transfer dissociation improves the ability of electron transfer dissociation to identify peptides in a complex mixture. Anal. Chem. 82(24), 10068–10074 (2010)

    Article  CAS  Google Scholar 

  29. McAlister, G.C., Phanstiel, D., Wenger, C.D., Lee, M.V., Coon, J.J.: Analysis of tandem mass spectra by FTMS for improved large-scale proteomics with superior protein quantification. Anal. Chem. 82(1), 316–322 (2010)

    Article  CAS  Google Scholar 

  30. Wenger, C.D., Phanstiel, D.H., Lee, M.V., Bailey, D.J., Coon, J.J.: COMPASS: A suite of pre- and post-search proteomics software tools for OMSSA. Proteomics 11(6), 1064–1074 (2011)

    Article  CAS  Google Scholar 

  31. Moore, R.E., Young, M.K., Lee, T.D.: Qscore: An algorithm for evaluating SEQUEST database search results. J. Am. Soc. Mass Spectrom. 13(4), 378–386 (2002)

    Article  CAS  Google Scholar 

  32. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4(3), 207–214 (2007)

    Article  CAS  Google Scholar 

  33. Wenger, C.D., Lee, M.V., Hebert, A.S., McAlister, G.C., Phanstiel, D.H., Westphall, M.S., Coon, J.J.: Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat. Methods 8(11), 933–935 (2011)

    Article  CAS  Google Scholar 

  34. Molina, H., Horn, D.M., Tang, N., Mathivanan, S., Pandey, A.: Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 104(7), 2199–2204 (2007)

    Article  CAS  Google Scholar 

  35. Chi, A., Huttenhower, C., Geer, L.Y., Coon, J.J., Syka, J.E.P., Bai, D.L., Shabanowitz, J., Burke, D.J., Troyanskaya, O.G., Hunt, D.F.: Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 104(7), 2193–2198 (2007)

    Article  CAS  Google Scholar 

  36. Swaney, D.L., Wenger, C.D., Thomson, J.A., Coon, J.J.: Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 106(4), 995–1000 (2009)

    Article  CAS  Google Scholar 

  37. Flora, J.W., Muddiman, D.C.: Selective, sensitive, and rapid phosphopeptide identification in enzymatic digests using ESI-FTICR-MS with infrared multiphoton dissociation. Anal. Chem. 73(14), 3305–3311 (2001)

    Article  CAS  Google Scholar 

  38. Crowe, M.C., Brodbelt, J.S.: Infrared multiphoton dissociation (IRMPD) and collisionally activated dissociation of peptides in a quadrupole ion trap with selective IRMPD of phosphopeptides. J. Am. Soc. Mass Spectrom. 15(11), 1581–1592 (2004)

    Article  CAS  Google Scholar 

  39. Werner, T., Becher, I., Sweetman, G., Doce, C., Savitski, M.M., Bantscheff, M.: High-resolution enabled TMT 8-plexing. Anal. Chem. 84(16), 7188–7194 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from Thermo Fisher Scientific and NIH grant R01 GM080148. C.M.R was funded by an NSF Graduate Research Fellowship and NIH Traineeship (T32GM008505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Coon.

Additional information

Aaron R. Ledvina and Christopher M. Rose contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledvina, A.R., Rose, C.M., McAlister, G.C. et al. Activated Ion ETD Performed in a Modified Collision Cell on a Hybrid QLT-Oribtrap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 24, 1623–1633 (2013). https://doi.org/10.1007/s13361-013-0621-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0621-1

Key words

Navigation