Skip to main content

Advertisement

Log in

Rapid Preconcentration for Liquid Chromatography–Mass Spectrometry Assay of Trace Level Neuropeptides

  • Focus: Electron Transfer Dissociation: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Measurement of neuropeptides in the brain through in vivo microdialysis sampling provides direct correlation between neuropeptide concentration and brain function. Capillary liquid chromatography-multistage mass spectrometry (CLC-MSn) has proven to be effective at measuring endogenous neuropeptides in microdialysis samples. In the method, microliter samples are concentrated onto nanoliter volume packed beds before ionization and mass spectrometry analysis. The long times required for extensive preconcentration present a barrier to routine use because of the many samples that must be analyzed and instability of neuropeptides. In this study, we evaluated the capacity of 75 μm inner diameter (i.d.) capillary column packed with 10 μm reversed phase particles for increasing the throughput in CLC-MSn based neuropeptide measurement. Coupling a high injection flow rate for fast sample loading/desalting with a low elution flow rate to maintain detection sensitivity, this column has reduced analysis time from ∼30 min to 3.8 min for 5 μL sample, with 3 pM limit of detection (LOD) for enkephalins and 10 pM LOD for dynorphin A1-8 in 5 μL sample. The use of isotope-labeled internal standard lowered peptide signal variation to less than 5 %. This method was validated for in vivo detection of Leu and Met enkephalin with microdialysate collected from rat globus pallidus. The improvement in speed and stability makes CLC-MSn measurement of neuropeptides in vivo more practical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ogren, S.O., Kuteeva, E., Elvander-Tottie, E., Hokfelt, T.: Neuropeptides in learning and memory processes with focus on galanin. Eur. J. Pharmacol. 626(1), 9–17 (2010)

    Article  Google Scholar 

  2. Willie, J.T., Chemelli, R.M., Sinton, C.M., Yanagisawa, M.: To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 24, 429–458 (2001)

    Article  CAS  Google Scholar 

  3. Heilig, M.: The NPY system in stress, anxiety, and depression. Neuropeptides 38(4), 213–224 (2004)

    Article  CAS  Google Scholar 

  4. DiLeone, R.J., Georgescu, D., Nestler, E.J.: Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci 73(6), 759–768 (2003)

    Article  CAS  Google Scholar 

  5. Lambert, R.C., Moos, F.C., Richard, P.: Action of endogenous oxytocin within the paraventricular or supraoptic nuclei—a powerful link in the regulation of the bursting pattern of oxytocin neurons during the milk-ejection reflex in rats. Neuroscience 57(4), 1027–1038 (1993)

    Article  CAS  Google Scholar 

  6. Olive, M.F., Maidment, N.T.: Repeated heroin administration increases extracellular opioid peptide-like immunoreactivity in the globus pallidus ventral pallidum of freely moving rats. Psychopharmacology (Berl) 139(3), 251–254 (1998)

    Article  CAS  Google Scholar 

  7. Nieto, M.M., Wilson, J., Cupo, A., Roques, B.P., Noble, F.: Chronic morphine treatment modulates the extracellular levels of endogenous enkephalins in rat brain structures involved in opiate dependence: a microdialysis study. J. Neurosci. 22(3), 1034–1041 (2002)

    CAS  Google Scholar 

  8. Difeliceantonio, A.G., Mabrouk, O.S., Kennedy, R.T., Berridge, K.C.: Enkephalin surges in dorsal neostriatum as a signal to eat. Curr. Biol. 22(20), 1918–1924 (2012)

    Article  CAS  Google Scholar 

  9. Maidment, N.T., Brumbaugh, D.R., Rudolph, V.D., Erdelyi, E., Evans, C.J.: Microdialysis of extracellular endogenous opioid-peptides from rat-brain in vivo. Neuroscience 33(3), 549–557 (1989)

    Article  CAS  Google Scholar 

  10. Kendrick, K.M.: Microdialysis measurement of in vivo neuropeptide release. J. Neurosci. Methods 34(1–3), 35–46 (1990)

    Google Scholar 

  11. Fletcher, H.J., Stenken, J.A.: An in vitro comparison of microdialysis relative recovery of met- and leu-enkephalin using cyclodextrins and antibodies as affinity agents. Anal. Chim. Acta 620(1–2), 170–175 (2008)

    Google Scholar 

  12. Herbaugh, A.W., Stenken, J.A.: Antibody-enhanced microdialysis collection of CCL2 from rat brain. J. Neurosci. Methods 202(2), 124–127 (2011)

    Article  CAS  Google Scholar 

  13. Pettersson, A., Amirkhani, A., Arvidsson, B., Markides, K., Bergquist, J.: A feasibility study of solid supported enhanced microdialysis. Anal. Chem. 76(6), 1678–1682 (2004)

    Article  CAS  Google Scholar 

  14. Freed, A.L., Cooper, J.D., Davies, M.I., Lunte, S.M.: Investigation of the metabolism of Substance P in rat striatum by microdialysis sampling and capillary electrophoresis with laser-induced fluorescence detection. J. Neurosci. Methods 109(1), 23–29 (2001)

    Article  CAS  Google Scholar 

  15. Kostel, K.L., Lunte, S.M.: Evaluation of capillary electrophoresis with post-column derivatization and laser-induced fluorescence detection for the determination of Substance P and its metabolites. J. Chromatogr. B Biomed. Sci. App. 695(1), 27–38 (1997)

    Article  CAS  Google Scholar 

  16. Desiderio, D.M., Zhu, X.G.: Quantitative analysis of methionine enkephalin and beta-endorphin in the pituitary by liquid secondary ion mass spectrometry and tandem mass spectrometry. J. Chromatogr. A 794(1–2), 85–96 (1998)

    Google Scholar 

  17. Haskins, W.E., Wang, Z.Q., Watson, C.J., Rostand, R.R., Witowski, S.R., Powell, D.H., Kennedy, R.T.: Capillary LC-MS2 at the attomole level for monitoring and discovering endogenous peptides in microdialysis samples collected in vivo. Anal. Chem. 73(21), 5005–5014 (2001)

    Article  CAS  Google Scholar 

  18. Xu, N., Qiu, C., Wang, W., Wang, Y., Chai, C., Yan, Y., Zhu, D.: HPLC/MS/MS for quantification of two types of neurotransmitters in rat brain and application: myocardial ischemia and protection of Sheng-Mai-San. J. Pharm. Biomed. Anal. 55(1), 101–108 (2011)

    Article  CAS  Google Scholar 

  19. Sinnaeve, B.A., Storme, M.L., Van Bocxlaer, J.F.: Capillary liquid chromatography and tandem mass spectrometry for the quantification of enkephalins in cerebrospinal fluid. J. Sep. Sci. 28(14), 1779–1784 (2005)

    Article  CAS  Google Scholar 

  20. Dawson, R., Steves, J.P., Lorden, J.F., Oparil, S.: Reverse-phase separation and electrochemical detection of neuropeptides. Peptides 6(6), 1173–1178 (1985)

    Article  CAS  Google Scholar 

  21. Shen, H., Lada, M.W., Kennedy, R.T.: Monitoring of Met-enkephalin in vivo with 5-min temporal resolution using microdialysis sampling and capillary liquid chromatography with electrochemical detection. J. Chromatogr. B 704(1/2), 43–52 (1997)

    CAS  Google Scholar 

  22. Marinelli, P.W., Lam, M., Bai, L., Quirion, R., Gianoulakis, C.: A microdialysis profile of dynorphin a(1-8) release in the rat nucleus accumbens following alcohol administration. Alcohol. Clin. Exp. Res. 30(6), 982–990 (2006)

    Article  CAS  Google Scholar 

  23. Liu, Z.R., Welin, M., Bragee, B., Nyberg, F.: A High-recovery extraction procedure for quantitative analysis of Substance P and opioid peptides in human cerebrospinal fluid. Peptides 21(6), 853–860 (2000)

    Article  CAS  Google Scholar 

  24. Andren, P.E., Emmett, M.R., Caprioli, R.M.: Micro-Electrospray—zeptomole-attomole per microliter sensitivity for peptides. J. Am. Soc. Mass Spectrom. 5(9), 867–869 (1994)

    Article  CAS  Google Scholar 

  25. Lanckmans, K., Stragier, B., Sarre, S., Smolders, I., Michotte, Y.: Nano-LC-MS/MS for the monitoring of angiotensin IV in rat brain microdialysates: limitations and possibilities. J. Sep. Sci. 30(14), 2217–2224 (2007)

    Article  CAS  Google Scholar 

  26. Li, Q., Zubieta, J.-K., Kennedy, R.T.: Practical aspects of in vivo detection of neuropeptides by microdialysis coupled off-line to capillary LC with multistage MS. Anal. Chem. 81(6), 2242–2250 (2009)

    Article  CAS  Google Scholar 

  27. Baseski, H.M., Watson, C.J., Cellar, N.A., Shackman, J.G., Kennedy, R.T.: Capillary liquid chromatography with MS3 for the determination of enkephalins in microdialysis samples from the striatum of anesthetized and freely-moving rats. J. Mass Spectrom. 40(2), 146–153 (2005)

    Article  CAS  Google Scholar 

  28. Emmett, M.R., Andren, P.E., Caprioli, R.M.: Specific molecular mass detection of endogenously released neuropeptides using in vivo microdialysis mass spectrometry. J. Neurosci. Methods 62(1/2), 141–147 (1995)

    Article  CAS  Google Scholar 

  29. Andren, P.E., Caprioli, R.M.: Determination of extracellular release of neurotensin in discrete rat brain regions utilizing in vivo microdialysis/electrospray mass spectrometry. Brain Res. 845(2), 123–129 (1999)

    Article  CAS  Google Scholar 

  30. Mabrouk, O.S., Li, Q., Song, P., Kennedy, R.T.: Microdialysis and mass spectrometric monitoring of dopamine and enkephalins in the globus pallidus reveal reciprocal interactions that regulate movement. J. Neurochem. 118(1), 24–33 (2011)

    Article  CAS  Google Scholar 

  31. Mabrouk, O.S., Kennedy, R.T.: Simultaneous oxytocin and Arg-vasopressin measurements in microdialysates using capillary liquid chromatography-mass spectrometry. J. Neurosci. Methods 209(1), 127–133 (2012)

    Article  CAS  Google Scholar 

  32. Behrens, H.L., Chen, R., Li, L.: Combining microdialysis, NanoLC-MS, and MALDI-TOF/TOF to detect neuropeptides secreted in the crab, Cancer borealis. Anal. Chem. 80(18), 6949–6958 (2008)

    Article  CAS  Google Scholar 

  33. Constantopoulos, T.L., Jackson, G.S., Enke, C.G.: Effects of salt concentration on analyte response using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 10(7), 625–634 (1999)

    Article  CAS  Google Scholar 

  34. Reed, B., Bidlack, J.M., Chait, B.T., Kreek, M.J.: Extracellular biotransformation of beta-endorphin in rat striatum and cerebrospinal fluid. J. Neuroendocrinol. 20(5), 606–616 (2008)

    Article  CAS  Google Scholar 

  35. Giddings, J.C.: Unified separation science. Wiley, New York (1991)

    Google Scholar 

  36. Hokfelt, T., Ljungdahl, A., Terenius, L., Elde, R., Nilsson, G.: Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia - enkephalin and Substance P. Proc. Natl. Acad. Sci. U.S.A. 74(7), 3081–3085 (1977)

    Article  CAS  Google Scholar 

  37. Whistler, J.L., Chuang, H.H., Chu, P., Jan, L.Y., von Zastrow, M.: Functional dissociation of Mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23(4), 737–746 (1999)

    Article  CAS  Google Scholar 

  38. Angulo, J.A., McEwen, B.S.: Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus-accumbens. Brain Res. Rev. 19(1), 1–28 (1994)

    Article  Google Scholar 

  39. Paxinos, G., Watson, C.J. The Rat Brain in Stereotaxic Coordinates. Elsevier, Amsterdam; Boston, 2007.

  40. Heemskerk, A.A.M., Busnel, J.-M., Schoenmaker, B., Derks, R.J.E., Klychnikov, O., Hensbergen, P.J., Deelder, A.M., Mayboroda, O.A.: Ultra-low flow electrospray ionization-mass spectrometry for improved ionization efficiency in phosphoproteomics. Anal. Chem. 84(10), 4552–4559 (2012)

    Article  CAS  Google Scholar 

  41. Wilm, M., Mann, M.: Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68(1), 1–8 (1996)

    Article  CAS  Google Scholar 

  42. Vandeemter, J.J., Zuiderweg, F.J., Klinkenberg, A.: Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 5(6), 271–289 (1956)

    Article  CAS  Google Scholar 

  43. Song, P., Mabrouk, O.S., Hershey, N.D., Kennedy, R.T.: In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography-mass spectrometry. Anal. Chem. 84(1), 412–419 (2012)

    Article  CAS  Google Scholar 

  44. Siegel, R.E., Eiden, L.E., Affolter, H.U.: Elevated potassium stimulates enkephalin biosynthesis in bovine chromaffin cells. Neuropeptides. 6(6), 543–552 (1985)

    Article  CAS  Google Scholar 

  45. Richter, J.A., Wesche, D.L., Frederickson, R.C.A.: K-stimulated release of Leu-enkephalin and Met-enkephalin from rat striatal slices—lack of effect of morphine and naloxone. Eur. J. Pharmacol. 56(1/2), 105–113 (1979)

    Article  CAS  Google Scholar 

  46. Simantov, R., Kuhar, M.J., Uhl, G.R., Snyder, S.H.: Opioid peptide enkephalin - immunohistochemical mapping in rat central nervous-system. Proc. Natl. Acad. Sci. U.S.A. 74(5), 2167–2171 (1977)

    Article  CAS  Google Scholar 

  47. Wamsley, J.K., Young, W.S., Kuhar, M.J.: Immunohistochemical localization of enkephalin in rat forebrain. Brain Res. 190(1), 153–174 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge support for this work by NIH grant R37 EB003320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Mabrouk, O.S. & Kennedy, R.T. Rapid Preconcentration for Liquid Chromatography–Mass Spectrometry Assay of Trace Level Neuropeptides. J. Am. Soc. Mass Spectrom. 24, 1700–1709 (2013). https://doi.org/10.1007/s13361-013-0605-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0605-1

Key words

Navigation