Skip to main content
Log in

Gas-Phase Intramolecular Protein Crosslinking via Ion/Ion Reactions: Ubiquitin and a Homobifunctional sulfo-NHS Ester

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Gas-phase intra-molecular crosslinking of protein ubiquitin cations has been demonstrated via ion/ion reactions with anions of a homobifunctional N-hydroxysulfosuccinimide (sulfo-NHS) ester reagent. The ion/ion reaction between multiply-protonated ubiquitin and crosslinker monoanions produces a stable, charge-reduced complex. Covalent crosslinking is indicated by the consecutive loss of 2 molecules of sulfo-NHS under ion trap collisional activation conditions. Covalent modification is verified by the presence of covalently crosslinked sequence ions produced by ion-trap collision-induced dissociation of the ion generated from the losses of sulfo-NHS. Analysis of the crosslinked sequence fragments allows for the localization of crosslinked primary amines, enabling proximity mapping of the gas-phase 3-D structures. The presence of two unprotonated reactive sites within the distance constraint of the crosslinker is required for successful crosslinking. The ability to covalently crosslink is, therefore, sensitive to protein charge state. As the charge state increases, fewer reactive sites are available and protein structure is more likely to become extended because of intramolecular electrostatic repulsion. At high charge states, the reagent shows little evidence for covalent crosslinking but does show evidence for ‘electrostatic crosslinking’ in that the binding of the sulfonate groups to the protein is sufficiently strong that backbone cleavages are favored over reagent detachment under ion trap collisional activation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Scheme 2
Scheme 3
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Whitehouse, C.M., Dreyer, R.N., Yamashita, M., Fenn, J.B.: Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 57, 675–679 (1985)

    Article  CAS  Google Scholar 

  2. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science. 246, 64–71 (1989)

    Article  CAS  Google Scholar 

  3. Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F.: Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Processes 78, 53–68 (1987)

    Article  CAS  Google Scholar 

  4. Karas, M., Hillenkamp, F.H.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988)

    Article  CAS  Google Scholar 

  5. McLuckey, S.A.: Principles of collisional activation in analytical mass spectrometry. J. Am. Soc. Mass Spectrom. 3, 599–614 (1992)

    Article  CAS  Google Scholar 

  6. Jennings, K.R.: The changing impact of the collision-induced decomposition of ions on mass spectrometry. Int. J. Mass Spectrom. 200, 479–493 (2000)

    Article  CAS  Google Scholar 

  7. Shukla, A.K., Futrell, J.H.: Tandem mass spectrometry: dissociation of ions by collisional activation. J. Mass Spectrom. 35, 1069–1090 (2000)

    Article  CAS  Google Scholar 

  8. Cooks, R.G., Ast, T.: Mabud, Md. A.: Collisions of polyatomic ions with surfaces. Int. J. Mass Spectrom Ion Processes 100, 209–265 (1990)

    Article  CAS  Google Scholar 

  9. Chorush, R.A., Little, D.P., Beu, S.C., Wood, T.D., McLafferty, F.W.: Surface-induced dissociation of multiply-protonated proteins. Anal. Chem. 67, 1042–1046 (1995)

    Article  CAS  Google Scholar 

  10. Dongre, A.R., Somogyi, A., Wysocki, V.H.: Surface-induced dissociation: An effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J. Mass Spectrom. 31, 339–350 (1996)

    Article  CAS  Google Scholar 

  11. Laskin, J., Denisov, E.V., Shukla, A.K., Barlow, S.E., Futrell, J.H.: Surface-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer: Instrument design and evaluation. Anal. Chem. 74, 3255–3261 (2002)

    Article  CAS  Google Scholar 

  12. Sleno, L., Volmer, D.A.: Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 39, 1091–1112 (2004)

    Article  CAS  Google Scholar 

  13. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)

    Article  CAS  Google Scholar 

  14. Zubarev, R.A., Kruger, N.A., Fridricksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 121, 2857–2862 (1999)

    Article  CAS  Google Scholar 

  15. Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.W.: Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal Chem. 72, 563–573 (2000)

    Article  CAS  Google Scholar 

  16. Zubarev, R.A.: Reactions of polypeptide ions with electrons in the gas phase. Mass Spectrom Rev. 22, 57–77 (2003)

    Article  CAS  Google Scholar 

  17. Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 101, 9528–9533 (2004)

    Article  CAS  Google Scholar 

  18. Coon, J.J., Syka, J.E.P., Schwartz, J.C., Shabanowitz, J., Hunt, D.F.: Anion dependence in the partitioning between proton and electron transfer in ion/ion reactions. Int. J. Mass Spectrom. 236, 33–42 (2004)

    Article  CAS  Google Scholar 

  19. Pitteri, S.J., Chrisman, P.A., Hogan, J.M., McLuckey, S.A.: Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap: reactions of doubly and triply protonated peptides with SO2•-. Anal. Chem. 77, 1831–1839 (2005)

    Article  CAS  Google Scholar 

  20. Gunawardena, H.P., He, M., Chrisman, P.A., Pitteri, S.J., Hogan, J.M., Hodges, B.D., McLuckey, S.A.: Electron transfer versus proton transfer in gas-phase ion–ion reactions of polyprotonated peptides. J. Am. Chem. Soc. 127, 12627–12639 (2005)

    Article  CAS  Google Scholar 

  21. van der Hart, W.J.: Studies of ion structures by photodissociation. Int. J. Mass Spectrom 118/119, 617–663 (1992)

    Article  Google Scholar 

  22. Uechi, G.T., Dunbar, R.C.: The kinetics of infrared laser photodissociation of n‐butylbenzene ions at low pressure. J. Chem. Phys. 96, 8897–8905 (1992)

    Article  CAS  Google Scholar 

  23. Little, D.P., Speir, J.P., Senko, M.W., O’Connor, P.B., McLafferty, F.W.: Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal. Chem. 66, 2809–2815 (1994)

    Article  CAS  Google Scholar 

  24. Li, W., Hendrickson, C.L., Emmett, M.R., Marshall, A.G.: Identification of intact proteins in mixtures by alternated capillary liquid chromatography electrospray ionization and LC ESI infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 71, 4397–4402 (1999)

    Article  CAS  Google Scholar 

  25. Crowe, M.C., Brodbelt, J.S.: Differentiation of phosphorylated and unphosphorylated peptides by high performance liquid chromatography/electrospray ionization/infrared multiphoton dissociation in a quadrupole ion trap. Anal. Chem. 77, 5726–5734 (2005)

    Article  CAS  Google Scholar 

  26. Oh, J.Y., Moon, J.H., Lee, Y.H., Hyung, S.-W., Lee, S.-W., Kim, M.S.: Photodissociation tandem mass spectrometry at 266 nm of an aliphatic peptide derivatized with phenyl isothiocyanate and 4-sulfophenyl isothiocyanate. Rapid Commun. Mass Spectrom. 19, 1283–1288 (2005)

    Article  CAS  Google Scholar 

  27. Thompson, M.S., Cui, W., Reilly, J.P.: Factors that impact the vacuum ultraviolet photofragmentation of peptide ions. J. Am. Soc. Mass Spectrom. 18, 1439–1452 (2007)

    Article  CAS  Google Scholar 

  28. Wilson, J.J., Brodbelt, J.S.: MS/MS simplification by 355 nm ultraviolet photodissociation of chromophore-derivatized peptides in a quadrupole ion trap. Anal. Chem. 79, 7883–7892 (2007)

    Article  CAS  Google Scholar 

  29. Reilly, J.P.: Ultraviolet photofragmentation of biomolecular ions. Mass Spectrom. Rev. 28, 425–447 (2009)

    Article  CAS  Google Scholar 

  30. Schnier, P.D., Price, W.D., Jockusch, R.A., Williams, E.R.: Blackbody infrared radiative dissociation of bradykinin and its analogues: energetics, dynamics, and evidence for salt-bridge structures in the gas phase. J. Am. Chem. Soc. 118, 7178–7189 (1996)

    Article  CAS  Google Scholar 

  31. Dunbar, R.C.: BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications. Mass Spectrom. Rev. 23, 127–58 (2004)

    Article  CAS  Google Scholar 

  32. Kaltashov, I.A., Eyles, S.J.: Mass Spectrometry in Biophysics. Wiley-Interscience, Hoboken (2005). ISBN 0-471-45602-0

    Book  Google Scholar 

  33. Stockman, B.J., Euvrard, A., Scahill, T.A.: Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: the A-state of human ubiquitin. J. Biomol. NMR 3, 285–296 (1993)

    Article  CAS  Google Scholar 

  34. Brutscher, B., Brüschweiler, R., Ernst, R.R.: Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by 1H, 13C, and 15N nuclear magnetic resonance spectroscopy. Biochemistry 36, 13043–13053 (1997)

    Article  CAS  Google Scholar 

  35. Koeniger, S.L., Merenbloom, S.I., Sevugarajan, S., Clemmer, D.E.: Transfer of structural elements from compact to extended states in unsolvated ubiquitin. J. Am. Chem. Soc. 128, 11713–11719 (2006)

    Article  CAS  Google Scholar 

  36. Wyttenbach, T., Bowers, M.T.: Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility-mass spectrometry environment. J. Phys. Chem. B 115, 12266–12275 (2011)

    Article  CAS  Google Scholar 

  37. Shi, H., Pierson, N.A., Valentine, S.J., Clemmer, D.E.: Conformation types of ubiquitin [M + 8H]8+ ions from water:methanol solutions: evidence for the N and A states in aqueous solution. J. Phys. Chem. B 116, 3344–3352 (2012)

    Article  CAS  Google Scholar 

  38. Myung, S., Badman, E.R., Lee, Y.J., Clemmer, D.E.: Structural transitions of electrosprayed ubiquitin ions stored in an ion trap over 10 ms to 30 s. J. Phys. Chem. A 106, 9976–9982 (2002)

    Article  CAS  Google Scholar 

  39. Li, J., Taraszka, J.A., Counterman, A.E., Clemmer, D.E.: Influence of solvent composition and capillary temperature on the conformations of electrosprayed ions: unfolding of compact ubiquitin conformers from pseudonative and denatured solutions. Int. J. Mass Spectrom 185/186/187, 37–47 (1999)

    CAS  Google Scholar 

  40. Valentine, S.J., Counterman, A.E., Clemmer, D.E.: Conformer-dependent proton-transfer reactions of ubiquitin ions. J. Am. Soc. Mass Spectrom. 8, 954–961 (1997)

    Article  CAS  Google Scholar 

  41. Segev, E., Wyttenbach, T., Bowers, M.T., Gerber, R.B.: Conformational evolution of ubiquitin ions in electrospray mass spectrometry: molecular dynamics simulations at gradually increasing temperatures. Phys. Chem., Chem. Phys 10, 3077–3082 (2008)

    Article  CAS  Google Scholar 

  42. Koeniger, S.L., Clemmer, D.E.: Resolution and structural transitions of elongated states of ubiquitin. J. Am. Soc. Mass Spectrom. 18, 322–331 (2007)

    Article  CAS  Google Scholar 

  43. Badman, E.R., Hoaglund-Hyzer, C.S., Clemmer, D.E.: Dissociation of different conformations of ubiquitin ions. J. Am. Soc. Mass Spectrom. 13, 719–723 (2002)

    Article  CAS  Google Scholar 

  44. Koeniger, S.L., Merenbloom, S.I., Clemmer, D.E.: Evidence for many resolvable structures within conformation types of electrosprayed ubiquitin ions. J. Phys. Chem. B 110, 7017–7021 (2006)

    Article  CAS  Google Scholar 

  45. Shvartsburg, A.A., Li, F., Tang, K., Smith, R.D.: Characterizing the structures and folding of free proteins using 2-D gas-phase separations: observation of multiple unfolded conformers. Anal. Chem. 78, 3304–3315 (2006)

    Article  CAS  Google Scholar 

  46. Freitas, M.A., Hendrickson, C.L., Emmet, M.R., Marshall, A.G.: Gas-phase bovine ubiquitin cation conformations resolved by gas-phase hydrogen/deuterium exchange rate and extent. Int. J. Mass Spectrom 185/186/187, 565–575 (1999)

    CAS  Google Scholar 

  47. Evans, S.E., Lueck, N., Marzluff, E.M.: Gas phase hydrogen/deuterium exchange of proteins in an ion trap mass spectrometer. Int. J. Mass Spectrom. 222, 175–187 (2003)

    Article  CAS  Google Scholar 

  48. Hoerner, J.K., Xiao, H., Kaltashov, I.A.: Structural and dynamic characteristics of a partially folded state of ubiquitin revealed by hydrogen exchange mass spectrometry. Biochem. 44, 11286–11294 (2005)

    Article  CAS  Google Scholar 

  49. Breuker, K., Oh, H., Horn, D.M., Cerda, B.A., McLafferty, F.W.: Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J. Am. Chem. Soc. 124, 6407–6420 (2002)

    Article  CAS  Google Scholar 

  50. Breuker, K., Oh, H., Cerda, B.A., Horn, D.M., McLafferty, F.W.: Hydrogen atom loss in electron-capture dissociation: A Fourier transform-ion cyclotron resonance study with single isotopomeric ubiquitin ions. Eur. J. Mass Spectrom. 8, 177–180 (2002)

    Article  CAS  Google Scholar 

  51. Oh, H., Breuker, K., Sze, S.K., Ge, Y., Carpenter, B.K., McLafferty, F.W.: Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 99, 15863–15868 (2002)

    Article  CAS  Google Scholar 

  52. Skinner, O.S., McLafferty, F.W., Breuker, K.: How ubiquitin unfolds after transfer into the gas phase. J. Am. Soc. Mass Spectrom. 23, 1011–1014 (2012)

    Article  CAS  Google Scholar 

  53. Ly, T., Julian, R.R.: Elucidating the tertiary structure of protein ions in vacuo with site specific photoinitiated radical reactions. J. Am. Chem. Soc. 132, 8602–8609 (2010)

    Article  CAS  Google Scholar 

  54. Sinz, A.: Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom. Rev. 25, 663–682 (2006)

    Article  CAS  Google Scholar 

  55. Chakravarti, B., Lewis, S.J., Chakravarti, D.N., Raval, A.: Three dimensional structures of proteins and protein complexes from chemical cross-linking and mass spectrometry: a biochemical and computational overview. Curr. Proteom. 3, 1–21 (2006)

    Article  CAS  Google Scholar 

  56. Singh, P., Panchaud, A., Goodlett, D.R.: Chemical cross-linking and mass spectrometry as a low-resolution protein structure determination technique. Anal. Chem. 82, 2636–2642 (2010)

    Article  CAS  Google Scholar 

  57. Hermanson, G.T.: Bioconjugate Techniques, 2nd edn, pp. 234–275. San Diego, Academic Press (2008)

    Book  Google Scholar 

  58. Dihazi, G.H., Sinz, A.: Mapping low-resolution three-dimensional protein structures using chemical cross-linking and Fourier transform ion-cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 17, 2005–2014 (2003)

    Article  CAS  Google Scholar 

  59. ExPASy Crosslinker Mapping Tools. Available at: http://expasy.org/tools/ accessed May 7, 2012

  60. Reid, G.E., McLuckey, S.A.: "Top down" protein characterization by tandem mass spectrometry. J. Mass Spectrom. 37, 663–675 (2002)

    Article  CAS  Google Scholar 

  61. Han, X., Jin, M., Breuker, K., McLafferty, F.W.: Extending top-down mass spectrometry to proteins with masses greater than 200 kilodaltons. Science 314, 109–112 (2006)

    Article  CAS  Google Scholar 

  62. Kruppa, G.H., Schoeniger, J.: Young. M.M.: A top-down approach to protein structural studies using chemical cross-linking and Fourier transform mass spectrometry. Rapid Commun. Mass Spectrom. 17, 155–162 (2003)

    Article  CAS  Google Scholar 

  63. Novak, P., Young, M.M., Schoeniger, J.S., Kruppa, G.H.: A top-down approach to protein structure studies using chemical cross-linking and Fourier transform mass spectrometry. Eur. J. Mass. Spectrom. 9, 623–631 (2003)

    Article  CAS  Google Scholar 

  64. Ly, T., Liu, Z., Pujanauski, B.G., Sarpong, R., Julian, R.R.: Surveying ubiquitin structure by noncovalent attachment of distance constrained bis(crown) ethers. Anal. Chem. 80, 5059–5064 (2008)

    Article  CAS  Google Scholar 

  65. Novak, P., Haskins, W.E., Ayson, M.J., Jacobsen, R.B., Schoeniger, J.S., Leavell, M.D., Young, M.M., Kruppa, G.H.: Unambiguous assignment of intramolecular chemical cross-links in modified mammalian membrane proteins by Fourier transform-tandem mass spectrometry. Anal. Chem. 77, 5101–5108 (2005)

    Article  CAS  Google Scholar 

  66. Han, H., McLuckey, S.A.: Selective covalent bond formation in polypeptide ions via gas-phase ion/ion reaction chemistry. J. Am. Chem. Soc. 131, 12884–12885 (2009)

    Article  CAS  Google Scholar 

  67. Hassell, K.M., Stutzman, J.R., McLuckey, S.A.: Gas-phase bioconjugation of peptides via ion/ion charge inversion: Schiff base formation on the conversion of cations to anions. Anal. Chem. 82, 1594–1597 (2010)

    Article  CAS  Google Scholar 

  68. Mentinova, M., McLuckey, S.A.: Covalent modification of gaseous peptide ions with n-hydroxysuccinimide ester reagent ions. J. Am. Chem. Soc. 132, 18248–18257 (2010)

    Article  CAS  Google Scholar 

  69. McGee, W.M., Mentinova, M., McLuckey, S.A.: Gas-phase conjugation to arginine residues in polypeptide ions via N-hydroxysuccinimide ester-based reagent ions. J. Am. Chem. Soc. 134, 11412–11414 (2012)

    Article  CAS  Google Scholar 

  70. Mentinova, M., McLuckey, S.A.: Intra- and intermolecular crosslinking of peptide ions in the gas phase: Reagents and conditions. J. Am. Soc. Mass Spectrom. 22, 912–921 (2011)

    Article  CAS  Google Scholar 

  71. Xia, Y., Chrisman, P.A., Erickson, D.E., Liu, J., Liang, X., Londry, F.A., Yang, M.J., McLuckey, S.A.: Implementation of ion/ion reactions in a quadrupole/time-of-flight tandem mass spectrometer. Anal. Chem. 78, 4146–4154 (2006)

    Article  CAS  Google Scholar 

  72. Liang, X., Xia, Y., McLuckey, S.A.: Alternately pulsed nano-electrospray ionization/atmospheric pressure chemical ionization for ion/ion reactions in an electrodynamic ion trap. Anal. Chem. 78, 3208–3212 (2006)

    Article  CAS  Google Scholar 

  73. Xia, Y., Thomson, B.A., McLuckey, S.A.: Bidirectional ion transfer between quadrupole arrays: MSn ion/ion reaction experiments on a quadrupole/time-of-flight tandem mass spectrometer. Anal. Chem. 79, 8199–8206 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge that this research was sponsored by the National Institutes of Health under grant GM 45372.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. McLuckey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 345 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, I.K., Mentinova, M., McGee, W.M. et al. Gas-Phase Intramolecular Protein Crosslinking via Ion/Ion Reactions: Ubiquitin and a Homobifunctional sulfo-NHS Ester. J. Am. Soc. Mass Spectrom. 24, 733–743 (2013). https://doi.org/10.1007/s13361-013-0590-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0590-4

Key words

Navigation