Skip to main content
Log in

Overtone Mobility Spectrometry: Part 5. Simulations and Analytical Expressions Describing Overtone Limits

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Mathematical expressions for the analytical duty cycle associated with different overtones in overtone mobility spectrometry are derived from the widths of the transmitted packets of ions under different instrumental operating conditions. Support for these derivations is provided through ion trajectory simulations. The outcome of the theory and simulations indicates that under all operating conditions there exists a limit or maximum observable overtone that will result in ion transmission. Implications of these findings on experimental design are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Valentine, S.J., Liu, X., Plasencia, M.D., Hilderbrand, A.E., Kurulugama, R.T., Koeniger, S.L., Clemmer, D.E.: Developing liquid chromatography ion mobility mass spectrometry techniques. Expert Rev. Proteom. 2, 553–565 (2005)

    Article  CAS  Google Scholar 

  2. McLean, J.A., Ruotolo, B.T., Gillig, K.J., Russell, D.H.: Ion mobility-mass spectrometry: A new paradigm for proteomics Int. J. Mass Spectrom. 240, 301–315 (2005)

    Article  CAS  Google Scholar 

  3. Isailovic, D., Kurulugama, R.T., Plasencia, M.D., Stokes, S.T., Kyselova, Z., Goldman, R., Mechref, Y., Novotny, M.V., Clemmer, D.E.: Profiling of human serum glycans associated with liver cancer and cirrhosis by IMS-MS. J. Proteome Res. 7, 1109–1117 (2008)

    Article  CAS  Google Scholar 

  4. Williams, J.P., Grabenauer, M., Holland, R.J., Carpenter, C.J., Wormald, M.R., Giles, K., Harvey, D.J., Bateman, R.H., Scrivens, J.H., Bowers, M.T.: Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int. J. Mass Spectrom. 298, 119–127 (2010)

    Article  CAS  Google Scholar 

  5. Li, Z., Valentine, S.J., Clemmer, D.E.: Complexation of amino compounds by 18C6 improves selectivity by IMS-IMS-MS: Application to petroleum characterization. J. Am. Soc. Mass Spectrom. 22, 817–827 (2011)

    Article  CAS  Google Scholar 

  6. Becker, C., Fernandez-Lima, F.A., Russell, D.H.: Ion mobility-mass spectrometry: A tool for characterizing the petroleome. Spectroscopy 24, 38–42 (2009)

    CAS  Google Scholar 

  7. Bernstein, S.L., Duipuis, N.F., Lazo, N.D., Wyttenbach, T., Condron, M.M., Bitan, G., Teplow, D.B., Shea, J.-E., Ruotolo, B.T., Robinson, C.V., Bowers, M.T.: Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 1, 326–331 (2009)

    Article  CAS  Google Scholar 

  8. Uetrecht, C., Barbu, I.M., Shoemaker, G.K., van Duijn, E., Heck, A.J.R.: Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat. Chem. 3, 126–132 (2011)

    Article  CAS  Google Scholar 

  9. Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., Bateman, R.H.: Applications of a traveling wave-based radio-frequency only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18, 2401–2414 (2004)

    Article  CAS  Google Scholar 

  10. Pringle, S.D., Giles, K., Wildgoose, J.L., Williams, J.P., Slade, S.E., Thalassinos, K., Bateman, R.H., Bowers, M.T., Scrivens, J.H.: An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/traveling wave IMS/oa-TOF instrument. Int. J. Mass Spectrom. 261, 1–12 (2007)

    Article  CAS  Google Scholar 

  11. Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80, 9689–9699 (2008)

    Article  CAS  Google Scholar 

  12. Giles, K., Williams, J.P., Campuzano, I.: Enhancements in traveling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)

    Article  CAS  Google Scholar 

  13. Rosell-Llompart, J., Loscertales, J.G., Bingham, D., Fernandez de la Mora, J.: Sizing nanoparticles and ions with a short differential mobility analyzer. J. Aerosol Sci. 27, 695–719 (1996)

    Article  CAS  Google Scholar 

  14. Kaufman, S.L., Skogen, J.W., Dorman, F.D., Zarrin, F., Lewis, K.C.: Macromolecule analysis based on electrophoretic mobility in air: Globular proteins. Anal. Chem. 68, 1895–1904 (1996)

    Article  CAS  Google Scholar 

  15. Kaddis, C.S., Lomeli, S.H., Yin, S., Berhane, B., Apostol, M.I., Kickhoefer, V.A., Rome, L.H., Loo, J.A.: Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility. J. Am. Soc. Mass Spectrom. 18, 1206–1216 (2007)

    Article  CAS  Google Scholar 

  16. Gorshkov, M.P.: USSR Inventory’s Certificate 966583, (1982)

  17. Purves, R.W., Guevremont, R., Day, S., Pipich, C.W., Matyjaszczyk, M.S.: Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer. Rev. Sci. Instrum. 69, 4094–4105 (1998)

    Article  CAS  Google Scholar 

  18. Shvartsburg, A.A., Tang, K., Smith, R.D.: Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures. Anal. Chem. 76, 7366–7374 (2004)

    Article  CAS  Google Scholar 

  19. Shvartsburg, A.A., Prior, D.C., Tang, K., Smith, R.D.: High-resolution differential ion mobility separations using planar analyzers at elevated dispersion fields. Anal. Chem. 82, 7649–7655 (2010)

    Article  CAS  Google Scholar 

  20. Kurulugama, R., Nachtigall, F.M., Lee, S., Valentine, S.J., Clemmer, D.E.: Overtone mobility spectrometry: Part 1. Experimental observations. J. Am. Soc. Mass Spectrom. 20, 729–737 (2009)

    Article  CAS  Google Scholar 

  21. Valentine, S.J., Stokes, S.T., Kurulugama, R.T., Nachtigall, F.M., Clemmer, D.E.: Overtone mobility spectrometry: Part 2. Theoretical considerations of resolving power. J. Am. Soc. Mass Spectrom. 20, 738–750 (2009)

    Article  CAS  Google Scholar 

  22. Lee, S., Ewing, M.A., Nachtigall, F.M., Kurulugama, R.T., Valentine, S.J., Clemmer, D.E.: Determination of cross sections by overtone mobility spectrometry: Evidence for loss of unstable structures at higher overtones. J. Phys. Chem. B 114, 12406–12415 (2010)

    Article  CAS  Google Scholar 

  23. Valentine, S.J., Kurulugama, R.T., Clemmer, D.E.: Overtone mobility spectrometry: Part 3. On the origin of peaks. J. Am. Soc. Mass Spectrom. 22, 804–816 (2011)

    Article  CAS  Google Scholar 

  24. Kurulugama, R.T., Nachtigall, F.M., Valentine, S.J., Clemmer, D.E.: Overtone mobility spectrometry: Part 4. OMS-OMS analyses of complex mixtures. J. Am. Soc. Mass Spectrom. 22, 2049–2060 (2011)

    Article  CAS  Google Scholar 

  25. Tyndall, A.M.: The Mobility of Positive Ions in Gases. Cambridge University Press, Cambridge (1938)

    Google Scholar 

  26. Mason, E.A., McDaniel, E.W.: Transport Properties of Ions in Gases, pp. 1–27, 137–223. Wiley, New York (1988)

  27. Revercomb, H.E., Mason, E.A.: Theory of plasma chromatography/gaseous electrophoresis—a review. Anal. Chem. 47, 970–983 (1975)

    Article  CAS  Google Scholar 

  28. St. Louis, R.H., Hill Jr., H.H., Eiceman, G.A.: Ion mobility spectrometry in analytical chemistry. Crit. Rev. Anal. Chem. 21, 321–355 (1990)

    Article  CAS  Google Scholar 

  29. Clemmer, D.E., Jarrold, M.F.: Ion mobility measurements and their applications to clusters and biomolecules. J. Mass Spectrom. 32, 577–592 (1997)

    Article  CAS  Google Scholar 

  30. Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., Hill Jr., H.H.: Ion mobility-mass spectrometry. J. Mass Spectrom. 43, 1–22 (2008)

    Article  CAS  Google Scholar 

  31. Hoaglund-Hyzer, C.S., Counterman, A.E., Clemmer, D.E.: Anhydrous protein ions. Chem. Rev. 99, 3037–3079 (1999)

    Article  CAS  Google Scholar 

  32. Wyttenbach, T., von Helden, G., Batka Jr., J.J., Carlat, D., Bowers, M.T.: Effect of the long-range potential on ion mobility measurements. J. Am. Soc. Mass Spectrom. 8, 275–282 (1997)

    Article  CAS  Google Scholar 

  33. Shvartsburg, A.A., Jarrold, M.F.: An exact hard spheres scattering model for the mobility of polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996)

    Article  CAS  Google Scholar 

  34. Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., Schatz, G.C., Jarrold, M.F.: Structural information from ion mobility measurements: effects of the long range potential. J. Phys. Chem. 100, 16082–16086 (1996). Erratum: J. Phys. Chem. A. 101, 968 (1997)

    Article  CAS  Google Scholar 

  35. Bluhm, B.K., Gillig, K.J., Russell, D.H.: Development of a Fourier-transform ion cyclotron resonance mass spectrometer-ion mobility spectrometer. 71, 4078–4086 (2000)

  36. Tang, K., Shvartsburg, A.A., Lee, H.-N., Prior, D.C., Buschbach, M.A., Li, F., Tolmachev, A.V., Anderson, G.A., Smith, R.D.: High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal. Chem. 77, 3330–3339 (2005)

    Google Scholar 

  37. Koeniger, S.L., Merenbloom, S.I., Valentine, S.J., Jarrold, M.F., Udseth, H.R., Smith, R.D., Clemmer, D.E.: An IMS-IMS analogue of MS-MS. Anal. Chem. 78, 4161–4174 (2006)

    Article  CAS  Google Scholar 

  38. Appelhans, D.A., Dahl, D.A.: SIMION ion optics simulations at atmospheric pressure. Int. J. Mass Spectrom. 244, 1–14 (2005)

    Article  CAS  Google Scholar 

  39. Julian, R.R., Mabbett, S.R., Jarrold, M.F.: Ion funnels for the masses: Experiments and simulations with a simplified ion funnel. J. Am. Soc. Mass Spectrom. 16, 1708–1712 (2005)

    Article  CAS  Google Scholar 

  40. Scientific Instrument Services Inc.: SIMION ver. 8.0, Ringoes, NJ, USA

  41. Myung, S., Lee, Y.J., Moon, M.H., Taraszka, J., Sowell, R., Koeniger, S., Hilderbrand, A.E., Valentine, S.J., Cherbas, L., Cherbas, P., Kaufmann, T.C., Miller, D.F., Mechref, Y., Novotny, M.V., Ewing, M.A., Sporleder, C.R., Clemmer, D.E.: Development of high-sensitivity ion trap ion mobility spectrometry time-of-flight techniques: A high-throughput Nano-LC-IMS-TOF separation of peptides arising from a Drosophila protein extract. Anal. Chem. 75, 5137–5145 (2003)

    Article  CAS  Google Scholar 

  42. Liu, Y., Valentine, S.J., Counterman, A.E., Hoaglund, C.S., Clemmer, D.E.: Injected-ion mobility analysis of biomolecules. Anal. Chem. 69, 728A–735A (1997)

    Article  CAS  Google Scholar 

  43. Merenbloom, S.I., Glaskin, R.S., Henson, Z.B., Clemmer, D.E.: High resolution ion cyclotron mobility spectrometry. Anal. Chem. 81, 1482–1487 (2009)

    Article  CAS  Google Scholar 

  44. Glaskin, R.S., Valentine, S.J., Clemmer, D.E.: A scanning mode for ion cyclotron mobility spectrometry. Anal. Chem. 82, 8266–8271 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge partial support of this work provided by grants from the Analytical Node of the METACyt initiative funded by a grant from the Lilly Endowment and by the NIH (1RC1GM090798-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Clemmer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 543 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewing, M.A., Zucker, S.M., Valentine, S.J. et al. Overtone Mobility Spectrometry: Part 5. Simulations and Analytical Expressions Describing Overtone Limits. J. Am. Soc. Mass Spectrom. 24, 615–621 (2013). https://doi.org/10.1007/s13361-012-0559-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-012-0559-8

Key words

Navigation