Skip to main content
Log in

Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)70, one molecule of (dT)35, or two molecules of (dT)35] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Meyer, R.R., Laine, P.S.: The single-stranded DNA-binding protein of Escherichia coli. Microbiol. Rev. 54, 342–380 (1990)

    CAS  Google Scholar 

  2. Wold, M.S.: Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92 (1997)

    Article  CAS  Google Scholar 

  3. Kim, Y.T., Richardson, C.C.: Bacteriophage T7 gene 2.5 protein: An essential protein for DNA replication. Proc. Natl. Acad. Sci. U. S. A. 90, 10173–10177 (1993)

    Article  CAS  Google Scholar 

  4. Yang, C., Curth, U., Urbanke, C., Kang, C.: Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution. Nat. Struct. Biol. 4, 153–157 (1997)

    Article  CAS  Google Scholar 

  5. Chédin, F., Seitz, E.M., Kowalczykowski, S.C.: Novel homologs of replication protein A in archaea: Implications for the evolution of ssDNA-binding proteins. Trends Biochem. Sci. 23, 273–277 (1998)

    Article  Google Scholar 

  6. Lohman, T.M., Ferrari, M.E.: Escherichia coli single-stranded DNA-binding protein: Multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 63, 527–570 (1994)

    Article  CAS  Google Scholar 

  7. Chase, J.W., Williams, K.R.: Single-stranded DNA binding proteins required for DNA replication. Annu. Rev. Biochem. 55, 103–136 (1986)

    Article  CAS  Google Scholar 

  8. Shereda, R.D., Kozlov, A.G., Lohman, T.M., Cox, M.M., Keck, J.L.: SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 43, 289–318 (2008)

    Article  CAS  Google Scholar 

  9. Murzin, A.G.: OB (oligonucleotide/oligosaccharide binding)-fold: Common structural and functional solution for non-homologous sequences. EMBO J. 12, 861–867 (1993)

    CAS  Google Scholar 

  10. Raghunathan, S., Ricard, C.S., Lohman, T.M., Waksman, G.: Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength X-ray diffraction on the selenomethionyl protein at 2.9 Å resolution. Proc. Natl. Acad. Sci. U. S. A. 94, 6652–6657 (1997)

    Article  CAS  Google Scholar 

  11. Raghunathan, S., Kozlov, A.G., Lohman, T.M., Waksman, G.: Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Biol. 7, 648–652 (2000)

    Article  CAS  Google Scholar 

  12. Bujalowski, W., Lohman, T.M.: Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry 25, 7799–7802 (1986)

    Article  CAS  Google Scholar 

  13. Bujalowski, W., Overman, L.B., Lohman, T.M.: Binding mode transitions of Escherichia coli single strand binding protein-single-stranded DNA complexes. Cation, anion, pH, and binding density effects. J. Biol. Chem. 263, 4629–4640 (1988)

    CAS  Google Scholar 

  14. Lohman, T.M., Overman, L.B., Datta, S.: Salt-dependent changes in the DNA-binding cooperativity of Escherichia coli single strand binding protein. J. Mol. Biol. 187, 603–615 (1986)

    Article  CAS  Google Scholar 

  15. Roy, R., Kozlov, A.G., Lohman, T.M., Ha, T.: Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J. Mol. Biol. 369, 1244–1257 (2007)

    Article  CAS  Google Scholar 

  16. Ferrari, M.E., Bujalowski, W., Lohman, T.M.: Cooperative binding of E. coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode. J. Mol. Biol. 236, 106–123 (1994)

    Article  CAS  Google Scholar 

  17. Savvides, S.N., Raghunathan, S., Futterer, K., Kozlov, A.G., Lohman, T.M., Waksman, G.: The C-terminal domain of full-length E. coli SSB is disordered even when bound to DNA. Protein Sci. 13, 1942–1947 (2004)

    Article  CAS  Google Scholar 

  18. Lu, D., Keck, J.L.: Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I. Proc. Natl. Acad. Sci. U. S. A. 105, 9169–9174 (2008)

    Article  CAS  Google Scholar 

  19. Curth, U., Genschel, J., Urbanke, C., Greipel, J.: In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res. 24, 2706–2711 (1996)

    Article  CAS  Google Scholar 

  20. Marceau, A.H., Bahng, S., Massoni, S.C., George, N.P., Sandler, S.J., Marians, K.J., Keck, J.L.: Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO J. 30, 4236–4247 (2011)

    Article  CAS  Google Scholar 

  21. Shereda, R.D., Reiter, N.J., Butcher, S.E., Keck, J.L.: Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB's C terminus. J. Mol. Biol. 386, 612–625 (2009)

    Article  CAS  Google Scholar 

  22. Kozlov, A.G., Cox, M.M., Lohman, T.M.: Regulation of single-stranded DNA binding by the C termini of Escherichia coli single-stranded DNA-binding (SSB) protein. J. Biol. Chem. 285, 17246–17252 (2010)

    Article  CAS  Google Scholar 

  23. Williams, K.R., Spicer, E.K., LoPresti, M.B., Guggenheimer, R.A., Chase, J.W.: Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins. J. Biol. Chem. 258, 3346–3355 (1983)

    CAS  Google Scholar 

  24. Krassa, K.B., Green, L.S., Gold, L.: Protein–protein interactions with the acidic COOH terminus of the single-stranded DNA-binding protein of the bacteriophage T4. Proc. Natl. Acad. Sci. U. S. A. 88, 4010–4014 (1991)

    Article  CAS  Google Scholar 

  25. Hollis, T., Stattel, J.M., Walther, D.S., Richardson, C.C., Ellenberger, T.: Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7. Proc. Natl. Acad. Sci. U. S. A. 98, 9557–9562 (2001)

    Article  CAS  Google Scholar 

  26. Marintcheva, B., Marintchev, A., Wagner, G., Richardson, C.C.: Acidic C-terminal tail of the ssDNA-binding protein of bacteriophage T7 and ssDNA compete for the same binding surface. Proc. Natl. Acad. Sci. U. S. A. 105, 1855–1860 (2008)

    Article  CAS  Google Scholar 

  27. Kong, D., Richardson, C.C.: Role of the acidic carboxyl-terminal domain of the single-stranded DNA-binding protein of bacteriophage T7 in specific protein-protein interactions. J. Biol. Chem. 273, 6556–6564 (1998)

    Article  CAS  Google Scholar 

  28. Chandler, M., Bird, R.E., Caro, L.: The replication time of the Escherichia coli K12 chromosome as a function of cell doubling time. J. Mol. Biol. 94, 127–132 (1975)

    Article  CAS  Google Scholar 

  29. Schneider, R.J., Wetmur, J.G.: Kinetics of transfer of Escherichia coli single strand DNA binding protein between single-stranded DNA molecules. Biochemistry 21, 608–615 (1982)

    Article  CAS  Google Scholar 

  30. Kozlov, A.G., Lohman, T.M.: Kinetic mechanism of direct transfer of Escherichia coli SSB tetramers between single-stranded DNA molecules. Biochemistry 41, 11611–11627 (2002)

    Article  CAS  Google Scholar 

  31. Kuznetsov, S.V., Kozlov, A.G., Lohman, T.M., Ansari, A.: Microsecond dynamics of protein-DNA interactions: Direct observation of the wrapping/unwrapping kinetics of single-stranded DNA around the E. coli SSB tetramer. J. Mol. Biol. 359, 55–65 (2006)

    Article  CAS  Google Scholar 

  32. Römer, R., Schomburg, U., Krauss, G., Maass, G.: Escherichia coli single-stranded DNA binding protein is mobile on DNA: Proton NMR study of its interaction with oligo- and polynucleotides. Biochemistry 23, 6132–6137 (1984)

    Article  Google Scholar 

  33. Zhou, R., Kozlov, A.G., Roy, R., Zhang, J., Korolev, S., Lohman, T.M., Ha, T.: SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146, 222–232 (2011)

    Article  CAS  Google Scholar 

  34. Roy, R., Kozlov, A.G., Lohman, T.M., Ha, T.: SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature 461, 1092–1097 (2009)

    Article  CAS  Google Scholar 

  35. Liang, J.L., Liu, B.-F.: Fluorescence resonance energy transfer study of subunit exchange in human lens crystallins and congenital cataract crystallin mutants. Protein Sci. 15, 1619–1627 (2006)

    Article  CAS  Google Scholar 

  36. Merickel, S.K., Sanders, E.R., Vazquez-Ibar, J.L., Johnson, R.C.: Subunit exchange and the role of dimer flexibility in DNA binding by the Fis protein. Biochemistry 41, 5788–5798 (2002)

    Article  CAS  Google Scholar 

  37. Heck, A.J.R., van den Heuvel, R.H.H.: Investigation of intact protein complexes by mass spectrometry. Mass Spectrom. Rev. 23, 368–389 (2004)

    Article  CAS  Google Scholar 

  38. Sharon, M., Robinson, C.V.: The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 76, 167–193 (2007)

    Article  CAS  Google Scholar 

  39. Vis, H., Dobson, C.M., Robinson, C.V.: Selective association of protein molecules followed by mass spectrometry. Protein Sci. 8, 1368–1370 (1999)

    Article  CAS  Google Scholar 

  40. Sobott, F., Benesch, J.L.P., Vierling, E., Robinson, C.V.: Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J. Biol. Chem. 277, 38921–38929 (2002)

    Article  CAS  Google Scholar 

  41. Aquilina, J.A., Benesch, J.L.P., Ding, L.L., Yaron, O., Horwitz, J., Robinson, C.V.: Subunit exchange of polydisperse proteins: Mass spectrometry reveals consequences of αA-crystallin truncation. J. Biol. Chem. 280, 14485–14491 (2005)

    Article  CAS  Google Scholar 

  42. Keetch, C.A., Bromley, E.H.C., McCammon, M.G., Wang, N., Christodoulou, J., Robinson, C.V.: L55P Transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers. J. Biol. Chem. 280, 41667–41674 (2005)

    Article  CAS  Google Scholar 

  43. Chevreux, G., Atmanene, C., Lopez, P., Ouazzani, J., Van Dorsselaer, A., Badet, B., Badet-Denisot, M.A., Sanglier-Cianferani, S.: Monitoring the dynamics of monomer exchange using electrospray mass spectrometry: The case of the dimeric glucosamine-6-phosphate synthase. J. Am. Soc. Mass Spectrom. 22, 431–439 (2011)

    Article  CAS  Google Scholar 

  44. Painter, A.J., Jaya, N., Basha, E., Vierling, E., Robinson, C.V., Benesch, J.L.P.: Real-time monitoring of protein complexes reveals their quaternary organization and dynamics. Chem. Biol. 15, 246–253 (2008)

    Article  CAS  Google Scholar 

  45. Uetrecht, C., Watts, N.R., Stahl, S.J., Wingfield, P.T., Steven, A.C., Heck, A.J.R.: Subunit exchange rates in hepatitis B virus capsids are geometry- and temperature-dependent. Phys. Chem Chem. Phys. 12, 13368–13371 (2010)

    Article  CAS  Google Scholar 

  46. Hyung, S.-J., Deroo, S.P., Robinson, C.V.: Retinol and retinol-binding protein stabilize transthyretin via formation of retinol transport complex. ACS Chem. Biol. 5, 1137–1146 (2010)

    Article  CAS  Google Scholar 

  47. Smith, D.P., Radford, S.E., Ashcroft, A.E.: Elongated oligomers in β2-microglobulin amyloid assembly revealed by ion mobility spectrometry-mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 107, 6794–6798 (2010)

    Article  CAS  Google Scholar 

  48. Natan, E., Hirschberg, D., Morgner, N., Robinson, C.V., Fersht, A.R.: Ultraslow oligomerization equilibria of p53 and its implications. Proc. Natl. Acad. Sci. U. S. A. 106, 14327–14332 (2009)

    Article  CAS  Google Scholar 

  49. Williams, N.K., Prosselkov, P., Liepinsh, E., Line, I., Sharipo, A., Littler, D.R., Curmi, P.M.G., Otting, G., Dixon, N.E.: In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini-intein. J. Biol. Chem. 277, 7790–7798 (2002)

    Article  CAS  Google Scholar 

  50. Elvin, C.M., Thompson, P.R., Argall, M.E., Hendry, P., Stamford, N.P.J., Lilley, P.E., Dixon, N.E.: Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene 87, 123–126 (1990)

    Article  CAS  Google Scholar 

  51. Urbanke, C., Schaper, A.: Kinetics of binding of single-stranded DNA binding protein from Escherichia coli to single-stranded nucleic acids. Biochemistry 29, 1744–1749 (1990)

    Article  CAS  Google Scholar 

  52. Kozlov, A.G., Lohman, T.M.: E. coli SSB tetramer binds the first and second molecules of (dT)35 with heat capacities of opposite sign. Biophys. Chem. 159, 48–57 (2011)

    Article  CAS  Google Scholar 

  53. Bujalowski, W., Lohman, T.M.: Monomer-tetramer equilibrium of the Escherichia coli ssb-1 mutant single strand binding protein. J. Biol. Chem. 266, 1616–1626 (1991)

    CAS  Google Scholar 

  54. Williams, K.R., Murphy, J.B., Chase, J.W.: Characterization of the structural and functional defect in the Escherichia coli single-stranded DNA binding protein encoded by the ssb-1 mutant gene. Expression of the ssb-1 gene under λ pL regulation. J. Biol. Chem. 259, 11804–11811 (1984)

    Google Scholar 

  55. Kozlov, A.G., Jezewska, M.J., Bujalowski, W., Lohman, T.M.: Binding specificity of Escherichia coli single-stranded DNA binding protein for the χ subunit of DNA Pol III holoenzyme and PriA helicase. Biochemistry 49, 3555–3566 (2010)

    Article  CAS  Google Scholar 

  56. Zhang, Y., Cremer, P.S.: Interactions between macromolecules and ions: The Hofmeister series. Curr. Opin. Chem. Biol. 10, 658–663 (2006)

    Article  CAS  Google Scholar 

  57. Dill, K.A.: Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990)

    Article  CAS  Google Scholar 

  58. Gupta, R., Hamdan, S.M., Dixon, N.E., Sheil, M.M., Beck, J.L.: Application of electrospray ionization mass spectrometry to study the hydrophobic interaction between the ε and θ subunits of DNA polymerase III. Protein Sci. 13, 2878–2887 (2004)

    Article  CAS  Google Scholar 

  59. Merickel, S.K., Sanders, E.R., Vázquez-Ibar, J.L., Johnson, R.C.: Subunit exchange and the role of dimer flexibility in DNA binding by the Fis protein. Biochemistry 41, 5788–5798 (2002)

    Article  CAS  Google Scholar 

  60. Andera, L., Schneider, G.J., Geiduschek, E.P.: An analysis of subunit exchange in the dimeric DNA-binding and DNA-bending protein, TF1. Biochimie 76, 933–940 (1994)

    Article  CAS  Google Scholar 

  61. Shuman, J., Vinson, C., McKnight, S.: Evidence of changes in protease sensitivity and subunit exchange rate on DNA binding by C/EBP. Science 249, 771–774 (1990)

    Article  CAS  Google Scholar 

  62. Bujalowski, W., Lohman, T.M.: Negative cooperativity in Escherichia coli single strand binding protein–oligonucleotide interactions: I. Evidence and a quantitative model. J. Mol. Biol. 207, 249–268 (1989)

    Article  CAS  Google Scholar 

  63. Bujalowski, W., Lohman, T.M.: Negative cooperativity in Escherichia coli single strand binding protein–oligonucleotide interactions: II. Salt, temperature, and oligonucleotide length effects. J. Mol. Biol. 207, 269–288 (1989)

    Article  CAS  Google Scholar 

  64. Kozlov, A.G., Lohman, T.M.: Stopped-flow studies of the kinetics of single-stranded DNA binding and wrapping around the Escherichia coli SSB tetramer. Biochemistry 41, 6032–6044 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.E.M. was the recipient of an Australian Postgraduate Scholarship. This work was supported by grants from the Australian Research Council, including an Australian Professorial Fellowship to N.E.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Beck.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1038 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, C.E., Jergic, S., Lo, A.T.Y. et al. Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions. J. Am. Soc. Mass Spectrom. 24, 274–285 (2013). https://doi.org/10.1007/s13361-012-0552-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-012-0552-2

Key words

Navigation