Skip to main content
Log in

Fast molecular assay to detect the rate of decay of Bactrocera oleae (Diptera: Tephritidae) DNA in Pterostichus melas (Coleoptera: Carabidae) gut contents

  • Technical Note
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

The molecular analysis of predation through specific DNA amplification has been utilized extensively over the last decade, and has been shown to be fast and effective. However, it is necessary to evaluate the prey detectability half-life if we are to correctly infer the relevance of particular predators to particular pests and to accurately model the effect of biocontrol. We present here the design and analysis of a set of primers to amplify olive fruit fly (Bactrocera oleae) DNA in predator gut contents, allowing fast evaluation of the digestion time. We modified the existing protocol by solubilizing the prey DNA directly from the gut, and we applied this modified protocol to demonstrate that Pterostichus melas, one of the most common carabids in olive groves in Italy, feeds on B. oleae pupae. After feeding carabids with a single pupa, traces of the pest were found to be detectable more than 20 h after ingestion. This method could also be applied to other predators to evaluate trophic interactions of the olive fruit fly. The relevance of generalist predation to the mortality of the pupal stage of B. oleae is of great economic interest since B. oleae causes serious damage during olive production, reducing the commercial value of olive oil and table olives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2

References

  • Agustí N, Shayler SP, Harwood JD, Vaughan IP, Sunderland KD, Symondson WO (2003) Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Mol Ecol 12:3467–3475

    Article  PubMed  CAS  Google Scholar 

  • Albertini A, Pizzolotto R, Petacchi R (2017) Carabid patterns in olive orchards and woody semi-natural habitats: first implications for conservation biological control against Bactrocera oleae. Biocontrol 62:71–83

    Article  CAS  Google Scholar 

  • Cavalloro R, Delrio G (1976) Observation on the distribution and survival of Dacus oleae pupae in the soil. Redia 56:167–176

    Google Scholar 

  • Chen Y, Giles KL, Payton ME, Greenstone MH (2000) Identifying key cereal aphid predators by molecular gut analysis. Mol Ecol 9:1887–1898

    Article  PubMed  CAS  Google Scholar 

  • Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C (2011) T-coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinis AM, Pereira JA, Pimenta MC, Oliveira J, Benhadi-Marin J, Santos SA (2015) Suppression of Bactrocera oleae (Diptera: Tephritidae) pupae by soil arthropods in the olive grove. J Appl Entomol 140:677–687

    Article  Google Scholar 

  • Eitzinger B, Unger EM, Traugott M, Scheu S (2014) Effects of prey quality and predator body size on prey DNA detection success in a centipede predator. Mol Ecol 23:3767–3776

    Article  PubMed  CAS  Google Scholar 

  • Eskelson MJ, Chapman EG, Archbold DD, Obrycki JJ, Harwood JD (2011) Molecular identification of predation by carabid beetles on exotic and native slugs in a strawberry agroecosystem. Biol Control 56:245–253

    Article  Google Scholar 

  • Gkisakis V, Volakakis N, Kollaros D, Bàrberi P, Kabourakis EM (2016) Soil arthropod community in the olive agroecosystem: determined by environment and farming practices in different management systems and agroecological zones. Agric Ecosyst Environ 218:178–189

    Article  Google Scholar 

  • Greenstone MH, Hunt JH (1993) Determination of prey antigen half-life in Polistes metricus using a monoclonal antibody-based immunodot assay. Entomol Exp Appl 68:1–7

    Article  Google Scholar 

  • Greenstone MH, Szendrei Z, Payton ME, Rowley DL, Coudron TC, Weber DC (2010) Choosing natural enemies for conservation biological control: use of the prey detectability half-life to rank key predators of Colorado potato beetle. Entomol Exp Appl 136:97–107

    Article  Google Scholar 

  • Greenstone MH, Payton ME, Weber DC, Simmons AM (2014) The detectability half-life in arthropod predator-prey research: what it is, why we need it, how to measure it, and how to use it. Mol Ecol 23:3799–3813

    Article  PubMed  Google Scholar 

  • Harper GL, Sheppard SK, Harwood JD et al (2006) Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators. Bull Entomol Res 96:295–304

    Article  PubMed  CAS  Google Scholar 

  • Hatteland BA, Symondson WOC, King RA, Skage M, Schander C, Solhøy T (2011) Molecular analysis of predation by carabid beetles (Carabidae) on the invasive Iberian slug Arion lusitanicus. Bull Entomol Res 101:675–686

    Article  PubMed  CAS  Google Scholar 

  • Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Roy Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Hendrich L, Moriniere J, Haszprunar G, Hebert PD, Hausmann A, Kohler F, Balke M (2015) A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Mol Ecol Resour 15:795–818

    Article  PubMed  CAS  Google Scholar 

  • Hosseini R, Schmidt O, Keller MA (2008) Factors affecting detectability of prey DNA in the gut contents of invertebrate predators: a polymerase chain reaction-based method. Entomol Exp Appl 126:194–202

    Article  CAS  Google Scholar 

  • Juen A, Traugott M (2005) Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system. Oecologia 142:344–352

    Article  PubMed  Google Scholar 

  • Juen A, Traugott M (2006) Amplification facilitators and multiplex PCR: tools to overcome PCR-inhibition in DNA gut content analysis of soil living invertebrates. Soil Biol Biochem 38:1872–1879

    Article  CAS  Google Scholar 

  • Juen A, Traugott M (2007) Revealing species-specific trophic links in soil food webs: molecular identification of scarab predators. Mol Ecol 16:1545–1557

    Article  PubMed  CAS  Google Scholar 

  • Kabakoff RI (2011) R in action. Manning, Shelter Island

    Google Scholar 

  • King RA, Vaughan IP, Bell JR, Bohan DA, Symondson WOC (2010) Prey choice by carabid beetles feeding on an earthworm community analysed using species- and lineage-specific PCR primers. Mol Ecol 19:1721–1732

    Article  PubMed  CAS  Google Scholar 

  • Lovei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256

    Article  PubMed  CAS  Google Scholar 

  • Medjkouh L, Tamendjari A, Keciri S, Santos J, Nunes MA, Oliveira MB (2016) The effect of the olive fruit fly (Bactrocera oleae) on quality parameters, and antioxidant and antibacterial activities of olive oil. Food Funct 7:2780–2788

    Article  PubMed  CAS  Google Scholar 

  • Monzò C, Sabater-Munoz B, Urbaneja A, Castanera P (2011) The ground beetle Pseudophonus rufipes revealed as predator of Ceratitis capitata in citrus orchards. Biol Control 56:17–21

    Article  Google Scholar 

  • Mraicha F, Ksantini M, Zouch O, Ayadi M, Sayadi S, Bouaziz M (2010) Effect of olive fruit fly infestation on the quality of olive oil from Chemlali cultivar during ripening. Food Chem Toxicol 48:3235–3241

    Article  PubMed  CAS  Google Scholar 

  • Nardi F, Carapelli A, Dallai R, Frati F (2003) The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Mol Biol 12:605–611

    Article  PubMed  CAS  Google Scholar 

  • Orsini MM, Daane KM, Karen RS, Nelson EH (2007) Mortality of olive fruit fly pupae in California. Biocontrol Sci Technol 17:797–807

    Article  Google Scholar 

  • Pizzolotto R, Mazzei A, Belfiore T, Bonacci T, Odoguardi R, Scalercio S, Iannotta N, Brandmayr P (2009) Biodiversità dei coleotteri carabidi (Coleoptera: Carabidae) nell’agroecosistema oliveto in Calabria. Entomologica 41:5–11

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 10 Aug 2017

  • Rejili M, Fernandes T, Dinis AM, Pereira JA, Baptista P, Santos SA, Lino-Neto T (2016) A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods. Bull Entomol Res 106:695–699

    Article  PubMed  CAS  Google Scholar 

  • Renkema JM, Cutler GC, Rutherford K (2014) Molecular analysis reveals lowbush blueberry pest predation rates depend on ground beetle (Coleoptera: Carabidae) species and pest density. Biocontrol 59:749–760

    Article  Google Scholar 

  • Šerić Jelaska L, Franjevic D, Jelaska SD, Symondson WOC (2014) Prey detection in carabid beetles (Coleoptera: Carabidae) in woodland ecosystems by PCR analysis of gut contents. Eur J Entomol 111:631–638

    Google Scholar 

  • Symondson WO, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  PubMed  CAS  Google Scholar 

  • Thiele H (1977) Carabid beetles in their environments. Springer, Heidelberg

  • Tsoumani KT, Drosopoulou E, Mavragani-Tsipidou P, Mathiopoulos KD (2013) Molecular characterization and chromosomal distribution of a species-specific transcribed centromeric satellite repeat from the olive fruit fly, Bactrocera oleae. PLoS One 8:e79393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urbaneja A, Marí FG, Tortosa D, Navarro C, Vanaclocha P, Bargues L, Castañera P (2006) Influence of ground predators on the survival of the Mediterranean fruit fly pupae, Ceratitis capitata, in Spanish citrus orchards. Biocontrol 51:611–626

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Fondo di Finanziamento Ordinario of the Italian Ministry of Instruction, University and Research.

Author information

Authors and Affiliations

Authors

Contributions

SP and RP conceived the research and conducted the experiments. RP analyzed the data and conducted the statistical analyses. SP and RP wrote the manuscript. RP secured funding. All authors read and approved the manuscript.

Corresponding author

Correspondence to Simona Panni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

. Multiple sequence alignment of part of the cox1 gene. The sequence from Bactrocera oleae was compared with those of other carabids that live in olive groves and those of some potential prey species of Pterostichus (earthworm, springtail, annelid, moth, firefly, and pot worm). The positions of the primers p_CoxO and p_CoxD are indicated. Pterostichus melas: genebank KM452177.1; Bactrocera oleae: AY210703.1 Lumbricus terrestris NC_001673.1; Orchesella cincta (Collembola) AJ272261.1; Enchytraeidae KM206565.1; Calathus fuscipes KM451314.1; Calathus cinctus KM452419.1; Carabus coriaceus KP067574.1; Oniscus asellus KU955993.1; Lepidoptera JN297456.1; Luciola italica KM448530.1 (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panni, S., Pizzolotto, R. Fast molecular assay to detect the rate of decay of Bactrocera oleae (Diptera: Tephritidae) DNA in Pterostichus melas (Coleoptera: Carabidae) gut contents. Appl Entomol Zool 53, 425–431 (2018). https://doi.org/10.1007/s13355-018-0564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-018-0564-x

Keywords

Navigation