Skip to main content

Advertisement

Log in

Bidirectional movement of aphid parasitoids (Braconidae: Aphidiinae) between crops and non-crop plants in agroecosystems of central Argentina

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

The movement of predators and parasitoids between natural and cultivated habitats is a common process in agroecosystems, which may be affected by different biotic and abiotic factors, mostly related to the availability of resources. Here, through a broad approach, we aimed to obtain an overview of factors affecting the bidirectional movement of aphid parasitoids (Braconidae: Aphidiinae) across cultivated habitats and their natural vegetated borders. Using bidirectional flight traps, we measured the number of parasitoids moving from borders to crops and vice versa, in fields of three common crop species (alfalfa, oat and wheat) in the Pampean region, Santa Fe, Argentina. The effects of the abundance of aphid prey, abundance and richness of flowers in both habitats, as well as temperature and wind speed on parasitoid movement, were assessed through generalized mixed models, considering sampling date and field as random factors. The relationship between parasitism percentages and parasitoid movement from the borders to the crops was explored separately for three pest aphid species: Aphis craccivora Koch, Rhopalosiphum padi (L.) and Schizaphis graminum (Rondani). Overall, we found a prevalence of parasitoids moving in the border-crop direction, mainly in wheat and alfalfa crops. Aphid abundance in the arrival habitat affected parasitoid movement in both directions. A link between parasitoid movement and parasitism percentages was observed for the aphid species S. graminum in wheat, suggesting a beneficial role of natural vegetation in pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c

Similar content being viewed by others

References

  • Ahmad ST, Wani SA (2014) Aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Kashmir, India: a checklist. Acta Zool Mex 30:539–552

    Google Scholar 

  • Akaike H (1987) Factor analysis and AIC. Psychometrika 52:317–332

    Article  Google Scholar 

  • Azzouz H, Giordanengo P, Wäckers FL, Kaiser L (2004) Effects of feeding frequency and sugar concentration on behavior and longevity of the adult aphid parasitoid: Aphidius ervi (Haliday) (Hymenoptera: Braconidae). Biol Control 31:445–452

    Article  Google Scholar 

  • Bannerman JA, Roitberg BD (2014) Impact of extreme and fluctuating temperatures on aphid–parasitoid dynamics. Oikos 123:89–98. doi:10.1111/j.1600-0706.2013.00686.x

    Article  Google Scholar 

  • Basigalup DH, Rossaningo R (2007) Panorama actual de la alfalfa en la Argentina. In: Basigalup DH (ed) El cultivo de la alfalfa en la Argentina. INTA, Córdoba, pp 13–25

    Google Scholar 

  • Basigalup DH, Ustarroz E (2007) Grazing alfalfa systems in the Argentinean Pampas. In: Proceedings of the 37th California Alfalfa and Forage Symposium–Alfalfa: back to the Basics, pp 53–62. http://alfalfa.ucdavis.edu/2007AlfalfaConference/2007/07-51.pdf. Accessed Sept 2017

  • Bates D, Maechler M, Bolker B (2011) Fit linear and generalized linear mixed-effects models. R package version 0.999375-35 lme4: linear mixed-effects models using S4 classes. R package version. http://CRAN.R-project.org/package=lme4. Accessed Sept 2017

  • Bertolaccini I, Andrada P, Quaino O (2008) Efecto de franjas marginales en la atracción de Coccinellidae y Syrphidae, depredadores de áfidos en trigo, en la zona central de la provincia de Santa Fe, Argentina. Agron Trop 58:267–276. http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0002-192X2008000300007

  • Bianchi F, Booij C, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blitzer EJ, Dormann CF, Holzschuh A, Klein AM, Rand TA, Tscharntke T (2012) Spillover of functionally important organisms between managed and natural habitats. Agric Ecosyst Environ 146:34–43

    Article  Google Scholar 

  • Boiteau G (2000) Efficiency of flight interception traps for adult Colorado potato beetles (Coleoptera: Chrysomelidae). J Econ Entomol 93:630–635

    Article  CAS  PubMed  Google Scholar 

  • Bora D, Deka B (2014) Role of visual cues in host searching behavior of Exorista sorbillans Widemann, a parasitoid of muga silk worm, Antheraea assama Westwood. J Insect Behav 17:92–104

    Article  Google Scholar 

  • Bortolotto OC, Menezes JRA, Hoshino AT (2015) Aphidophagous parasitoids can forage wheat crops before aphid infestation, Paraná State, Brazil. J Insect Sci 15:1–4. https://www.ncbi.nlm.nih.gov/pubmed/25843593

  • Chaplin-Kramer R, Kremen C (2012) Pest control experiments show benefits of complexity at landscape and local scales. Ecol Appl 22:1936–1948

    Article  PubMed  Google Scholar 

  • Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932

    Article  PubMed  Google Scholar 

  • Dohoo IR, Ducrot C, Fourichon C, Donald A, Humik D (1996) An overview of techniques for dealing with large numbers of independent variables in epidemiologic studies. Prev Vet Med 29:221–239

    Article  Google Scholar 

  • Duelli P, Studer M, Marchand I, Jakob S (1990) Population movements of arthropods between natural and cultivated areas. Biol Conserv 54:193–207

    Article  Google Scholar 

  • Ekbom B, Irwin ME, Yvon R (2000) Inter-changes of insects between agricultural and surrounding landscapes. Kluwer, Dordrecht, p 240

    Book  Google Scholar 

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015

    Article  Google Scholar 

  • Feng Y, Wratten S, Sandhu H, Keller M (2015) Interspecific competition between two generalist parasitoids that attack the leaf roller Epiphyas postvittana (Lepidoptera: Tortricidae). Bull Entomol Res 105:426–433

    Article  CAS  PubMed  Google Scholar 

  • Fischbein D, Bettinelli J, Bernstein C, Corle JC (2012) Patch choice from a distance and use of habitat information during foraging by the parasitoid Ibalia leucospoides. Ecol Entomol 37:161–168

    Article  Google Scholar 

  • Flinn PW, Hagstrum DW (2002) Temperature-mediated functional response of Theocola (Hymenoptera: Pteromalidae) parasitizing Rhyzopertha dominica (Coleoptera: Bostrichidae) wheat. J Stored Prod Res 38:185–190

    Article  Google Scholar 

  • Freckleton RP (2011) Dealing with collinearity in behavioral and ecological data: model averaging and the problems of measurement error. Behav Ecol Sociobiol 65:91–101

    Article  Google Scholar 

  • González E, Salvo A, Defagó MT, Valladares G (2016) A moveable feast: insects moving at the forest-crop interface are affected by crop phenology and the amount of forest in the landscape. PLoS One 11:e0158836

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurr GM, Scarratt SL, Wratten SD, Berndt L, Irvin N (2004) Ecological engineering, habitat manipulation and pest management. In: Gurr G, Wratten SD, Altieri MA (eds) Ecological engineering for pest management: advanced in habitat manipulation for arthropods. CSIRO, Collingwood, pp 1–12

    Google Scholar 

  • Hawkins BA, Gross P (1992) Species richness and population limitation in insect parasitoid-host systems. Am Nat 139:417–423

    Article  Google Scholar 

  • Hawkins BA, Thomas MB, Hochberg ME (1993) Refuge theory and biological control. Science 262:429–1432

    Article  Google Scholar 

  • Holland JM, Winder L, Perry JN (2000) The impact of dimethoate on the spatial distribution of beneficial arthropods in winter wheat. Ann Appl Biol 136:93–105

    Article  CAS  Google Scholar 

  • Holt RD, Hochberg ME (2001) Indirect interactions, community modules, and biological control: a theoretical perspective. In: Waijnberg E, Scott JK, Quimby PC (eds) Evaluation of indirect ecological effects of biological control. CAB International, Wallingford, pp 13–37

    Google Scholar 

  • Idris AB, Grafius E (1998) Diurnal flight activity of Diadegma insulare (Hymenoptera: Ichneumonidae) a parasitoid of the diamondback moth (Lepidoptera: Plutellidae) in the field. Environ Entomol 27:406–414

    Article  Google Scholar 

  • Irvin NA, Scarratt SL, Wratten SD, Frampton CM, Chapman RB, Tylianakis JM (2006) The effects of floral understoreys on parasitism of leafrollers (Tortricidae: Lepidoptera) on apples in New Zealand. Agric For Entomol 9:1–10. doi:10.1111/j.1461-9555.2006.00285.x/abstract

    Google Scholar 

  • Jang EB, Messing RH, Klungness LM, Carvalho LA (2000) Flight tunnel responses of Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) to olfactory and visual stimuli. J Insect Behav 13:525–538

    Article  Google Scholar 

  • Jerbi-Elayed M, Lebdi-Grissa K, Le Goff G, Hance T (2015) Influence of temperature on flight, walking and oviposition capacities of two aphid parasitoid species (Hymenoptera: Aphidiinae). J Insect Behav 28:157–166

    Article  Google Scholar 

  • Juillet JA (1964) Influence of weather on flight activity of parasitic Hymenoptera. Can J Zool 42:1133–1141

    Article  Google Scholar 

  • Lacoste C, Nansen C, Thompson S, Moir-Barnetson L, Mian A, McNee M, Flower KC (2015) Increased susceptibility to aphids of flowering wheat plants exposed to low temperatures. Environ Entomol 44:610–618

  • Landis DA, Menalled FD, Costamagna AC, Wilkinson TK (2005) Manipulating plant resources to enhance beneficial arthropods in agricultural landscapes. Weed Sci 53:902–908

    Article  CAS  Google Scholar 

  • La Salle J (1993) Parasitic Hymenoptera, biological control and biodiversity. In: Lasalle J, Gauld ID (eds) Hymenoptera and biodiversity. CAB International, Wallingford, pp 197–215

    Google Scholar 

  • Lavandero B, Wratten SD, Didham RK, Gurr G (2006) Increasing floral diversity for enhancement of biological control agents: a double-edged sword? Basic Appl Ecol 7:236–243

    Article  Google Scholar 

  • Lee JC, Menalled FD, Landis DA (2001) Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. J Appl Ecol 38:472–483

    Article  Google Scholar 

  • Macfadyen S, Muller W (2013) Edges in agricultural landscapes: species interactions and movement of natural enemies. PLoS One 8:e59659 doi:10.1371/journal.pone.0059659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macfadyen S, Davies AP, Zalucki MP (2015) Assessing the impact of arthropod natural enemies on crop pests at the field scale. Insect Sci 22:20–34

    Article  PubMed  Google Scholar 

  • Mazzi D, Dorn S (2012) Movement of insect pests in agricultural landscapes. Ann Appl Biol 160:97–113

    Article  Google Scholar 

  • McClure T, Frank SD (2015) Grain diversity effects on banker plant growth and parasitism by Aphidius colemani. Insects 6:772–791

    Article  PubMed  PubMed Central  Google Scholar 

  • Messing RH, Klungness LM, Jang EB (1997) Effects of wind on movement of Diachasmimorpha longicaudata, a parasitoid of tephritid fruit flies, in a laboratory flight tunnel. Entomol Exp Appl 82:147–152

    Article  Google Scholar 

  • Panigatti JH, Mosconi N (1982) Mapa detallado de suelos de la Estación Experimental Regional Agropecuaria Rafaela. INTA EEA Rafaela Publ Misc 13:3–8

    Google Scholar 

  • Petit JN, Hoddle MS, Grandgirard J, Roderick GK, Davies N (2008) Short-distance dispersal behaviour and establishment of the parasitoid Gonatocerus ashmeadi (Hymenoptera: Mymaridae) in Tahiti: implications for its use as a biological control agent against Homalodisca vitripennis (Hemiptera: Cicadellidae). Biol Control 45:344–352

    Article  Google Scholar 

  • Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary and applied perspectives. Annu Rev Entomol 51:309–330

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team: R: a language and environment for statistical computing version 2.11.1. Vienna, Austria. R foundation for statistical computing 2014

  • Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol Syst 35:491–522

    Article  Google Scholar 

  • Rimski-Korsakov H, Alvarez CR, Lavado RS (2015) Cover crops in the agricultural systems of the Argentine Pampas. J Soil Water Conserv 70:134A–140A

    Article  Google Scholar 

  • Rousse P, Gourdon F, Roubaud M, Chiroleu F, Quilici S (2009) Biotic and abiotic factors affecting the flight activity of Fopius arisanus, an egg-pupal parasitoid of fruit fly pests. Environ Entomol 38:896–903

    Article  CAS  PubMed  Google Scholar 

  • Schellhorn NA, Bianchi FJJA, Hsu CL (2014) Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression. Annu Rev Entomol 59:559–581

    Article  CAS  PubMed  Google Scholar 

  • Southwood TRE, Henderson PA (2000) Relative methods of population measurement and the derivation of absolute estimate. In: Southwood TRE, Henderson PA (eds) Ecological methods. Blackwell Science, Oxford, pp 269–292

    Google Scholar 

  • Takasu K, Takano SI, Mizutani N, Wada T (2004) Flight orientation behaviour of Ooencyrtus nezarae (Hymenoptera: Encyrtidae), an egg parasitoid of phytophagous bugs in soybean. Entomol Sci 7:201–206

    Article  Google Scholar 

  • Tumlinson JH, Lewis WJ, Louise EM (1993) How parasitic wasps find their hosts. Sci Am 268:100–106

    Article  CAS  Google Scholar 

  • Van Dyck H, Baguette M (2005) Dispersal behavior in fragmented landscapes: routine or special movements? Basic Appl Ecol 6:535–545

    Article  Google Scholar 

  • Veres A, Sandrine P, Cyrille C, Lavigne C (2013) Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric Ecosyst Environ 166:110–117

    Article  Google Scholar 

  • Vollhardt IMG, Bianchi FJJA, Wäckers FL, Thies C, Tscharntke T (2010a) Nectar vs. honeydew feeding by aphid parasitoids: does it pay to have a discriminating palate? Entomol Exp Appl 137:1–10

    Article  Google Scholar 

  • Vollhardt IMG, Bianchi FJJA, Wäckers FL, Thies C, Tscharntke T (2010b) Spatial distribution of flower vs. honeydew resources in cereal fields may affect aphid parasitism. Biol Control 53:204–213

    Article  Google Scholar 

  • Williams LI, Roane TM (2007) Nutritional ecology of a parasitic wasp: food source affects gustatory response, metabolic utilization, and survivorship. J Insect Physiol 53:1262–1275

    Article  CAS  PubMed  Google Scholar 

  • Vinson SB (1981) Habitat location. In: Nordlund DA, Jones RL, Lewis WJ (eds) Semiochemicals: their role in pest control. Semiochemicals, New York, pp 51–77

    Google Scholar 

  • Yu H, Zhang Y, Wu K, Wyckhuys KAG, Guo Y (2009) Flight potential of Microplitis mediator, a parasitoid of various lepidopteran pests. BioControl 54:183–193

    Article  Google Scholar 

  • Zumoffen L (2014) Interacciones planta-áfido-parasitoide para la implementación de tácticas de Control Biológico Conservativo de pulgones plaga. Doctoral thesis. National University of Córdoba, Argentina, p 176

  • Zumoffen L, Salto CE, Salvo A (2012) Preliminary study on parasitism of aphids (Hemiptera: Aphididae) in relation to characteristics of alfalfa fields (Medicago sativa L.) in the Argentine Pampas. Agric Ecosyst Environ 159:49–54

    Article  Google Scholar 

  • Zumoffen L, Rodriguez M, Gearding M, Salto C, Salvo A (2015) Plantas, áfidos, parasitoides: interacciones tróficas en agroecosistemas de la provincia de Santa Fe, Argentina y clave para la identificación de los Aphidiinae y Aphelinidae (Hymenoptera) conocidos de la región. Rev Soc Entomol Argent 74:133–144. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0373-56802015000200005. Accessed Sept 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Zumoffen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 824 kb)

Supplementary material 2 (TIFF 1342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zumoffen, L., Signorini, M. & Salvo, A. Bidirectional movement of aphid parasitoids (Braconidae: Aphidiinae) between crops and non-crop plants in agroecosystems of central Argentina. Appl Entomol Zool 53, 1–9 (2018). https://doi.org/10.1007/s13355-017-0520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-017-0520-1

Keywords

Navigation