Skip to main content
Log in

Association of SNPs in dopamine and serotonin pathway genes and their interacting genes with temperament traits in Charolais cows

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Cattle temperament is a complex trait, and molecular studies aimed at defining this trait are scarce. We used an interaction networks approach to identify new genes (interacting genes) and to estimate their effects and those of 19 dopamine- and serotonin-related genes on the temperament traits of Charolais cattle. The genes proopiomelanocortin (POMC), neuropeptide Y (NPY), solute carrier family 18, member 2 (SLC18A2) and FBJ murine osteosarcoma viral oncogene homologue (FOSFBJ) were identified as new candidates. Their potential to be associated with temperament was estimated according to their reported biological activities, which included interactions with neural activity, receptor function, targeting or synthesis of neurotransmitters and association with behaviour. Pen score (PS) and exit velocity (EV) measures were determined from 412 Charolais cows to calculate their temperament score (TS). Based on the TS, calm (n = 55; TS, 1.09 ± 0.33) and temperamental (n = 58; TS, 2.27 ± 0.639) cows were selected and genotyped using a 248 single-nucleotide variation (SNV) panel. Of the 248 variations in the panel, only 151 were confirmed to be polymorphic (single-nucleotide polymorphisms; SNPs) in the tested population. Single-marker association analyses between genotypes and temperament measures (EV, PS and/or TS) indicated significant associations of six SNPs from four candidate genes. The markers rs109576799 and rs43696138, located in the DRD3 and HTR2A genes, respectively, were significantly associated with both EV and TS traits. Four markers, rs110365063 and rs137756569 from the POMC gene and rs110365063 and rs135155082 located in SLC18A2 and DRD2, respectively, were associated with PS. The variant rs110365063 located in bovine SLC18A2 causes a change in the amino acid sequence from Ala to Thr. Further studies are needed to confirm the association of genetic profile with cattle temperament; however, our study represents important progress in understanding the regulation of cattle temperament by different genes with divergent functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banlaki Z, Elek Z, Nanasi T, Szekely A, Nemoda Z, Sasvari-Szekely M, Ronai Z (2015) Polymorphism in the Serotonin Receptor 2a (HTR2A) gene as possible predisposal factor for aggressive traits. PLoS One 10, e0117792. doi:10.1371/journal.pone.0117792

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchenauer D (1999) Genetics of behaviour in cattle. In: Fries R, Ruvinsky A (eds) The genetics of cattle. CABI Publishing, Wallingford, pp 365–390

    Google Scholar 

  • Burdick NC, Agado B, White JC, Matheney KJ, Neuendorff DA, Riley DG, Vann RC, Welsh TH Jr, Randel RD (2011) Technical note: Evolution of exit velocity in suckling Brahman calves. J Anim Sci 89:233–236. doi:10.2527/jas.2010-2973

    Article  CAS  PubMed  Google Scholar 

  • Burrow HM, Dillon RD (1997) Relationships between temperament and growth in a feedlot and commercial carcass traits of Bos indicus crossbreds. Aust J Exp Agric 37:407–411. doi:10.1071/EA96148

    Article  Google Scholar 

  • Campbell BT (2012) Improving beef cattle performance on tall fescue. PhD dissertation. University of Tennessee, Knoxville, TN, USA. Available online at: http://trace.tennessee.edu/utk_graddiss/1277. Accessed 23 February 2016

  • Cooke RF (2014) Bill E. Kunkle Interdisciplinary Beef Symposium: Temperament and acclimation to human handling influence growth, health, and reproductive responses in Bos taurus and Bos indicus cattle. J Anim Sci 92:5325–5333

    Article  CAS  PubMed  Google Scholar 

  • Deobald HM, Buchanan FC (2011) Characterization of two pro-opiomelanocortin gene variants and their effects on carcass traits in beef cattle. BMC Genet 12:2. doi:10.1186/1471-2156-12-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenske K, Prinzenberg EM, Brandt H, Gauly M, Erhardt G (2011) A chromosome-wide QTL study on BTA29 affecting temperament traits in German Angus beef cattle and mapping of DRD4. Animal 5:195–197. doi:10.1017/S1751731110001801

    Article  CAS  PubMed  Google Scholar 

  • Hammond AC, Olson TA, Chase CC Jr, Bowers EJ, Randel RD, Murphy CN, Vogt DW, Tewolde A (1996) Heat tolerance in two tropically adapted Bos Taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida. J Anim Sci 74:295–303

    Article  CAS  PubMed  Google Scholar 

  • Hiendleder S, Thomsen H, Reinsch N, Bennewitz J, Leyhe-Horn B, Looft C, Xu N, Medjugorac I, Russ I, Kühn C, Brockmann GA, Blümel J, Brenig B, Reinhardt F, Reents R, Averdunk G, Schwerin M, Förster M, Kalm E, Erhardt G (2003) Mapping of QTL for body conformation and behavior in cattle. J Hered 94:496–506. doi:10.1093/jhered/esg090

    Article  CAS  PubMed  Google Scholar 

  • Hulsman Hanna LL, Garrick DJ, Gill CA, Herring AD, Riggs PK, Miller RK, Sanders JO, Riley DG (2014) Genome-wide association study of temperament and tenderness using different Bayesian approaches in a Nellore–Angus crossbred population. Livest Sci 161:17–27

    Article  Google Scholar 

  • Krejci E, Gasnier B, Botton D, Isambert MF, Sagné C, Gagnon J, Massoulié J, Henry JP (1993) Expression and regulation of the bovine vesicular monoamine transporter gene. FEBS Lett 335:27–32. doi:10.1016/0014-5793(93)80432-T

    Article  CAS  PubMed  Google Scholar 

  • Liu WC, Chen SY, Jia XB, Wang J, Lai SJ (2014) Effects of variants in proopiomelanocortin and neuropeptide y genes on growth, carcass, and meat quality traits in rabbits. Asian-Australas J Anim Sci 27:609–615. doi:10.5713/ajas.2013.13807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohr KM, Stout KA, Dunn AR, Wang M, Salahpour A, Guillot TS, Miller GW (2015) Increased vesicular monoamine transporter 2 (VMAT2; Slc18a2) protects against methamphetamine toxicity. ACS Chem Neurosci 6:790–799. doi:10.1021/acschemneuro.5b00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lühken G, Glenske K, Brandt H, Erhardt G (2010) Genetic variation in monoamine oxidase A and analysis of association with behaviour traits in beef cattle. J Anim Breed Genet 127:411–418. doi:10.1111/j.1439-0388.2010.00855.x

    Article  PubMed  Google Scholar 

  • Moioli B, Napolitano F, Catillo G (2014) A selective genotyping approach identifies QTL in a simulated population. BMC Proc 8(Suppl 5):S5. doi:10.1186/1753-6561-8-S5-S5

    Article  PubMed  PubMed Central  Google Scholar 

  • Momozawa Y, Takeuchi Y, Kusunose R, Kikusui T, Mori Y (2005) Association between equine temperament and polymorphisms in dopamine D4 receptor gene. Mamm Genome 16:538–544. doi:10.1007/s00335-005-0021-3

    Article  CAS  PubMed  Google Scholar 

  • Mormède P (2005) Molecular genetics of behaviour: research strategies and perspectives for animal production. Livest Prod Sci 93:15–21. doi:10.1016/j.livprodsci.2004.11.002

    Article  Google Scholar 

  • Mortensen OV, Kristensen AS, Rudnick G, Wiborg O (1999) Molecular cloning, expression and characterization of a bovine serotonin transporter. Mol Brain Res 71:120–126. doi:10.1016/S0169-328X(99)00178-3

    Article  CAS  PubMed  Google Scholar 

  • Neville MJ, Johnstone EC, Walton RT (2004) Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 23:540–545. doi:10.1002/humu.20039

    Article  CAS  PubMed  Google Scholar 

  • Nkrumah JD, Crews DH Jr, Basarab JA, Price MA, Okine EK, Wang Z, Li C, Moore SS (2007) Genetic and phenotypic relationships of feeding behavior and temperament with performance, feed efficiency, ultrasound, and carcass merit of beef cattle. J Anim Sci 85:2382–2390. doi:10.2527/jas.2006-657

    Article  CAS  PubMed  Google Scholar 

  • Norris D, Ngambi JW, Mabelebele M, Alabi OJ, Benyi K (2014) Genetic selection for docility: a review. J Anim Plant Sci 24(2):374–379

    Google Scholar 

  • Paredes-Sánchez FA, Sifuentes-Rincón AM, Segura Cabrera A, García Pérez CA, Parra Bracamonte GM, Ambriz Morales P (2015) Associations of SNPs located at candidate genes to bovine growth traits, prioritized with an interaction networks construction approach. BMC Genet 16:91. doi:10.1186/s12863-015-0247-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  • Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90:991–1001. doi:10.1016/S0092-8674(00)80365-7

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SE, Neuendorff DA, Riley DG, Vann RC, Willard ST, Welsh TH Jr, Randel RD (2014) Genetic parameters of three methods of temperament evaluation of Brahman calves. J Anim Sci 92:3082–3087

    Article  CAS  PubMed  Google Scholar 

  • Schmutz SM, Stookey JM, Winkelman-Sim DC, Waltz CS, Plante Y, Buchanan FC (2001) A QTL study of cattle behavioral traits in embryo transfer families. J Hered 92:290–292. doi:10.1093/jhered/92.3.290

    Article  CAS  PubMed  Google Scholar 

  • Sherman EL, Nkrumah JD, Murdoch BM, Li C, Wang Z, Fu A, Moore SS (2008) Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle. J Anim Sci 86:1–16. doi:10.2527/jas.2006-799

    Article  CAS  PubMed  Google Scholar 

  • Sifuentes-Rincón AM, Trejo-Tapia AG, Randel RD, Ambriz-Morales P, Parra-Bracamonte GM (2016) Bovine dopamine receptors DRD1, DRD4, and DRD5: genetic polymorphisms and diversities among ten cattle breeds. Genet Mol Res 15(1), gmr.15017725

  • Smith SM, Vale WW (2006) The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci 8:383–395

    PubMed  PubMed Central  Google Scholar 

  • Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B (2014) Synonymous mutations frequently act as driver mutations in human cancers. Cell 156:1324–1335. doi:10.1016/j.cell.2014.01.051

    Article  CAS  PubMed  Google Scholar 

  • Våge J, Lingaas F (2008) Single nucleotide polymorphisms (SNPs) in coding regions of canine dopamine- and serotonin-related genes. BMC Genet 9:10. doi:10.1186/1471-2156-9-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolf EJ, Mitchell KS, Logue MW, Baldwin CT, Reardon AF, Aiello A, Galea S, Koenen KC, Uddin M, Wildman D, Miller MW (2014) The dopamine D3 receptor gene and posttraumatic stress disorder. J Trauma Stress 27:379–387. doi:10.1002/jts.21937

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Feng XH, Derynck R (1998) Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394:909–913. doi:10.1038/29814

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Wang YH, Chen H, Lei CZ, Fang XT, Wang JQ, Ma GB, Niu H, Xiao J (2009) The polymorphism of bovine POMC gene and its association with the growth traits of Nanyang cattle. Yi Chuan 31:1221–1225. doi:10.3724/SP.J.1005.2009.01221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the different herd owners for supporting the cattle sampling and temperament measurements. We acknowledge financial support from research grants FOMIX-Tamaulipas 177460 and SIP-IPN 20161076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Sifuentes-Rincón.

Additional information

Communicated by: Maciej Szydlowski

Implications

The serotonin and dopamine signalling systems are essential for different behavioural phenotypes in both invertebrates and vertebrates. Studies focused on the genetic basis of behaviour in cattle are scarce. As enough evidence supports the importance of behavioural traits on the productivity of beef cattle of different breeds, the identification of intrinsic genetic sources of variation could be of fundamental application by facilitating the selection of appropriate temperament genotypes. Selecting livestock with greater docility has positive benefits for improving beef cattle performance, in addition to improving human safety and animal welfare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garza-Brenner, E., Sifuentes-Rincón, A.M., Randel, R.D. et al. Association of SNPs in dopamine and serotonin pathway genes and their interacting genes with temperament traits in Charolais cows. J Appl Genetics 58, 363–371 (2017). https://doi.org/10.1007/s13353-016-0383-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-016-0383-0

Keywords

Navigation