Skip to main content
Log in

Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The genetic improvement of reproductive traits such as the number of teats is essential to the success of the pig industry. As opposite to most SNP association studies that consider continuous phenotypes under Gaussian assumptions, this trait is characterized as a discrete variable, which could potentially follow other distributions, such as the Poisson. Therefore, in order to access the complexity of a counting random regression considering all SNPs simultaneously as covariate under a GWAS modeling, the Bayesian inference tools become necessary. Currently, another point that deserves to be highlighted in GWAS is the genetic dissection of complex phenotypes through candidate genes network derived from significant SNPs. We present a full Bayesian treatment of SNP association analysis for number of teats assuming alternatively Gaussian and Poisson distributions for this trait. Under this framework, significant SNP effects were identified by hypothesis tests using 95 % highest posterior density intervals. These SNPs were used to construct associated candidate genes network aiming to explain the genetic mechanism behind this reproductive trait. The Bayesian model comparisons based on deviance posterior distribution indicated the superiority of Gaussian model. In general, our results suggest the presence of 19 significant SNPs, which mapped 13 genes. Besides, we predicted gene interactions through networks that are consistent with the mammals known breast biology (e.g., development of prolactin receptor signaling, and cell proliferation), captured known regulation binding sites, and provided candidate genes for that trait (e.g., TINAGL1 and ICK).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ayres DR, Pereira RJ, Boligon AA, Silva FF, Schenkel FS, Roso VM, Albuquerque LG (2013) Linear and Poisson models for genetic evaluation of tick resistance in cross‐bred Hereford x Nellore cattle. J Anim Breed Genet. doi:10.1111/jbg.12036

    PubMed  Google Scholar 

  • Balogh GA, Russo J, Mailo DA, Heulings R, Russo PA, Morrison P, Sheriff F, Russo IH (2007) The breast of parous women without cancer has a different genomic profile compared to those with cancer. Int J Oncol 31(5):1165

    CAS  PubMed  Google Scholar 

  • Band GO, Guimarães SEF, Lopes PS, Schierholt AS, Silva KM, Pires AV, Júnior AAB, Gomide LAM (2005a) Relationship between the Porcine Stress Syndrome gene and pork quality traits of F2 pigs resulting from divergent crosses. Genet Mol Biol 28:88–91

    Article  CAS  Google Scholar 

  • Band GO, Guimarães SEF, Lopes PS, Peixoto JDO, Faria DA, Pires AV, Figueiredo FC, Nascimento CS, Gomide LAM (2005b) Relationship between the Porcine Stress Syndrome gene and carcass and performance traits of F2 pigs resulting from divergent crosses. Genet Mol Biol 28:92–96

    Article  CAS  Google Scholar 

  • Beeckmann P, Moser G, Bartenschlager H, Reiner G, Geldermann H (2003) Linkage and QTL mapping for Susscrofa chromosome 8. J Anim Breed Genet 120(1):66–73

    Article  CAS  Google Scholar 

  • Bidanel JP, Rosendo A, Iannuccelli N, Riquet J, Gilbert H, Caritez JC, Billon Y, Amigues Y, Prunier A, Milan D (2008) Detection of quantitative trait loci for teat number and female reproductive traits in Meishan x Large White F2 pigs. Animal 2(6):813–820

    Article  CAS  PubMed  Google Scholar 

  • Cepica S, Reiner G, Bartenschlager H, Moser G, Geldermann H (2003) Linkage and QTL mapping for Sus scrofa chromosome X. J Anim Breed Genet 120(1):144–151

    Article  CAS  Google Scholar 

  • Cesareni G, Panni S, Nardelli G, Castagnoli L (2002) Can we infer peptide recognition specificity mediated by SH3 domains? Fed Eur Biochem Soc 513:38–44

    Article  CAS  Google Scholar 

  • Chen CP, Chen YH, Chern SR, Chang SJ, Tsai TL, Li SH, Chou HC, Lo YW, Lyu PC, Chan HL (2012) Placenta proteome analysis from Down syndrome pregnancies for biomarker discovery. Mol BioSyst 8:2360–2372

    Article  CAS  PubMed  Google Scholar 

  • Chomwisarutkun K, Murani E, Brunner R, Ponsuksili S, Wimmers K (2013) QTL region-specific microarrays reveal differential expression of positional candidate genes of signalingpathways associated withthe liability forthe inverted teat defect. Anim Genet 44(2):139–148

    Article  CAS  PubMed  Google Scholar 

  • Clayton GA, Powell JC, Hiley PG (1981) Inheritance of teat number and teat inversion in pigs. Anim Prod 33:299–304

    Article  Google Scholar 

  • Cowell IG (2002) E4BP4/NFIL3, a PAR‐related bZIP factor with many roles. Bioessays 24(11):1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Kim D-Y, Zhu J (2006) On the generalized poisson regression mixture model for mapping quantitative trait loci with count data. Genetics 174(4):2159–2172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding N, Guo Y, Knorr C, Ma J, Mao H, Lan L, Xiao S, Ai H, Haley CS (2009) Genome-wide QTL mapping for three traits related to teat number in a white Duroc x Erhualian pig resource population. BMC Genet 10:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Dynan WS, Tjian R (1983) The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35(1):79–87

    Article  CAS  PubMed  Google Scholar 

  • Fortes MR, Reverter A, Zhang Y, Collis E, NagarajSH JNN, PrayagaKC BW, Hawken RJ (2010) Associationweight matrix for the genetic dissection of puberty in beef cattle. Proc Natl Acad Sci U S A 107:13642–13647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fortes MR, Reverter-Gomez T, Hiriyur-Nagaraj S, Zhang Y, Jonsson N, Barris W, Lehnert S, Boe-Hansen GB, Hawken R (2011) A SNP-derived regulatory gene network underlying puberty in two tropical breeds of beef cattle. J Anim Sci 89:1669–1683

    Article  CAS  PubMed  Google Scholar 

  • Guo Y-M, Lee GJ, Archibald AL, Haley CS (2008) Quantitative trait loci for production traits in pigs: a combined analysis of two Meishan x Large White populations. Anim Genet 39(5):486–495

    Article  PubMed  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2009) Genomic selection using low-density marker panels. Genetics 182:343–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harville DA, Callanan TP (1989) Computational aspects of likelihood-based inference for variance components. In: Gianola D, Hammond K (eds) Advances in statistical methods for genetic improvement of livestock, edn. Springer, Berlin, pp 136–176

    Google Scholar 

  • Hidalgo AM, Lopes PS, Paixão DM, Silva FF, BastiaansenJWM PSR, Faria DA, Guimarães SEF (2013) Fine mapping and single nucleotide polymorphism effects estimation on pig chromosomes 1, 4, 7, 8, 17 and X. Genet Mol Biol 36(4):511–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirooka H, de Koning DJ, Harlizius B, van Arendonk JA, Rattink AP, Groenen MA, Brascamp EW, Bovenhuis H (2001) A whole-genome scanfor quantitative trait loci affecting teat number in pigs. J Anim Sci 79(9):2320–2326

    CAS  PubMed  Google Scholar 

  • Hong E-J, Park S-H, Choi K-C, Leung PCK, Jeung E-B (2006) Identification of estrogen-regulated genes by microarray analysis of the uterus of immature rats exposed to endocrine disrupting chemicals. Reprod Biol Endocrinol 4:49

    Article  PubMed Central  PubMed  Google Scholar 

  • Lahiry P, Wang J, Robinson JF, Turowec JP et al (2009) A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems. Am J Hum Genet 84(2):134–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Lee YF, Ng MK (2011) SNP and gene networks construction and analysis from classification of copy number variations data. BMC Bioinforma 12(Suppl 5):S4

    Article  CAS  Google Scholar 

  • Lorenzo-Bermejo J, Beckmann L, Chang-Claude J, Fischer C (2011) Using the posterior distribution of deviance to measure evidence of association for rare susceptibility variants. BMC Proc 5(9):S38

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin AD, Quinn KM, Park JH (2011) MCMCpack: Markov chain Monte Carlo in R. J Stat Softw 42(9):1–21

    Google Scholar 

  • Mazzocco M, Maffei M, Egeo A, Vergano A, Arrigo P, Di LR, Ghiotto F, Scartezzini P (2002) The identification of a novel human homologue of the SH3 binding glutamic acid-rich (SH3BGR) gene establishes a new family of highly conserved small proteins related to thioredoxin superfamily. Gene 291:233–239

    Article  CAS  PubMed  Google Scholar 

  • McKay RM, Rahnefeld GW (1990) Heritability of teat number in swine. Can J Anim Sci 70:425–430

    Article  Google Scholar 

  • Mehta MS, Dolfi SC, Bronfenbrener R, Bilal E, Chen C, Moore D et al (2013) Metabotropic glutamate receptor 1 expression and its polymorphic variants associate with breast cancer phenotypes. PLoS One 8(7):e69851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onteru SK, Fan B, Du Z-Q, Garrick DJ, Stalder KJ, Rothschild MF (2011) A whole-genome association study for pig reproductive traits. Anim Genet 43:18–26

    Article  PubMed  Google Scholar 

  • Perez-Enciso M, Tempelman RJ, Gianola D (1993) A comparisonbetween linear and Poisson mixed models for litter size inIberian Pigs. Livest Prod Sci 35:303

    Article  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statisticalcomputing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE et al (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 4:e6524

    Article  PubMed Central  PubMed  Google Scholar 

  • Reverter A, Fortes MRS (2013) Building single nucleotide polymorphism-derived gene regulatory networks: towards functional genomewide association studies. J Anim Sci 91:530–536

    Article  CAS  PubMed  Google Scholar 

  • Safe S, Abdelrahim M (2005) Sp transcription factor family and its role in cancer. Eur J Cancer 41(16):2438–2448

    Article  CAS  PubMed  Google Scholar 

  • Schneider JF, Rempel LA, Rohrer GA (2012) Genome-wide association study of swine farrowing traits. Part I: genetic and genomic parameter estimates. J Anim Sci 90:3353–3359

    Article  CAS  PubMed  Google Scholar 

  • Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 322:121–135

    Article  CAS  PubMed  Google Scholar 

  • Silva KM, Knol EF, Merks JWM, Guimarães SEF, Bastiaansen JWM, van Arendonk JAM, Lopes PS (2011a) Meta-analysis of results from quantitative trait loci mapping studies on pig chromosome 4. Anim Genet 42:280–292

    Article  CAS  PubMed  Google Scholar 

  • Silva FF, Rosa GJ, Guimarães SE, Lopes PS, de los Campos G (2011b) Three-step Bayesian factor analysis applied to QTL detection in crosses between outbred pig populations. Livest Sci 142(1):210–215

    Article  Google Scholar 

  • Smith BJ (2007) Boa: an R package for MCMC output convergence assessment and posterior inference. J Stat Softw 21(11):1–37

  • Testa CM, Standaert DG, Young AB, Penney JB Jr (1994) Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 14:3005–3018

    CAS  PubMed  Google Scholar 

  • Touzet H, Varré JS (2007) Efficient and accurate P-value computation for position weight matrices. Algorithm Mol Biol 2:15

    Article  Google Scholar 

  • Uimari P, Sironen A, Sevón-Aimonen M-L (2011) Whole-genome SNP association analysis ofreproduction traits in the Finnish Landrace pigbreed. Genet Sel Evol 43:42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Varona L, Sorensen D (2010) A genetic analysis of mortality in pigs. Genetics 184:277

    Article  PubMed Central  PubMed  Google Scholar 

  • Varona L, Gómez-Raya L, Rauw WM, Noguera JL (2005) A simulation study on the detection of causal mutations from F2 experiments. J Anim Breed Genet 122:30–36

    Article  CAS  PubMed  Google Scholar 

  • Vazquez AI, Bates DM, Rosa GJM, Gianola D, Weigel KA (2010) Technical note: an R package for fitting generalized linear mixed models in animal breeding. J Anim Sci 88(2):497–504

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Akita T, Awata T, Furukawa T, Sugai N, Inage Y, Ishii K, Ito Y, Kobayashi E, Kusumoto H, Matsumoto T, Mikawa S, Miyake M (2000) Quantitative trait loci (QTL) analysis in a Meishan x Gottingen crosspopulation. Anim Genet 31(6):376–384

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Gao P, Long M, Lin F, Wei JX, Ren JH et al (2011) Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol 28(4):1225–1254

    Article  CAS  PubMed  Google Scholar 

  • Wintermantel TM, Bock D, Fleig V, Greiner EF, Schütz G (2005) The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production. Mol Endocrinol 19(2):340–349

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28(24):3326–3328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Coordenção de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/NUFFIC and CAPES/DGU).

Ethical standards

The use of animals was reviewed and approved by the Ethics Statements of the Department of Animal Science, Federal University of Viçosa (UFV), MG, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Verardo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 62.7 kb)

ESM 2

(PDF 76.4 kb)

ESM 3

(PDF 70.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verardo, L.L., Silva, F.F., Varona, L. et al. Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs. J Appl Genetics 56, 123–132 (2015). https://doi.org/10.1007/s13353-014-0240-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-014-0240-y

Keywords

Navigation