Skip to main content
Log in

Considering specific clinical features as evidence of pathogenic copy number variants

  • Human Genetics ∙ Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Since the introduction of high-resolution microarray technologies, it has become apparent that structural chromosomal rearrangements can lead to a wide variety of clinical manifestations, including developmental delay/intellectual disability (DD/ID). It has been shown previously that the diagnostic yield of genome-wide array-based identification of submicroscopic alterations in patients with ID varies widely and depends on the patient selection criteria. More attempts have recently been made to define the phenotypic clues of pathogenic copy number variants (CNVs). The aim of this study was to investigate a well-phenotyped cohort of patients with DD/ID and determine whether certain clinical features may serve as indicators for pathogenic CNVs. A retrospective analysis was conducted for patients with DD/ID (n = 211) who were tested using genome-wide chromosomal microarray technologies and a review of the clinical data was performed. Pathogenic CNVs were detected in 29 patients. In comparison with individuals who had normal molecular karyotyping results (n = 182), malformations of the musculoskeletal system; congenital malformations of the CNS (particularly hydrocephalus and congenital malformations of the corpus callosum); minor anomalies of the eye, face, and neck subgroup (particularly downward-slanting palpebral fissures, minor anomalies of the ear, and micrognathia); brachydactyly; and umbilical hernia were more common in patients with chromosomal alterations. A multivariate logistic regression analysis allowed the identification of three independent pathogenic CNV predictors: congenital malformations of the corpus callosum, minor anomalies of the ear, and brachydactyly. Insights into the chromosomal phenotype may help to increase the diagnostic yield of microarray technologies and sharpen the distinction between chromosomal alterations and other conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Backx L, Ceulemans B, Vermeesch JR, Devriendt K, Van Esch H (2009) Early myoclonic encephalopathy caused by a disruption of the neuregulin-1 receptor ErbB4. Eur J Hum Genet 17(3):378–382. doi:10.1038/ejhg.2008.180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartnik M, Nowakowska B, Derwińska K, Wiśniowiecka-Kowalnik B, Kędzior M, Bernaciak J, Ziemkiewicz K, Gambin T, Sykulski M, Bezniakow N, Korniszewski L, Kutkowska-Kaźmierczak A, Klapecki J, Szczałuba K, Shaw CA, Mazurczak T, Gambin A, Obersztyn E, Bocian E, Stankiewicz P (2014) Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability. J Appl Genet 55(1):125–144. doi:10.1007/s13353-013-0181-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Battaglia A, Bianchini E, Carey JC (1999) Diagnostic yield of the comprehensive assessment of developmental delay/mental retardation in an institute of child neuropsychiatry. Am J Med Genet 82(1):60–66

    Article  CAS  PubMed  Google Scholar 

  • Bedeschi MF, Bonaglia MC, Grasso R, Pellegri A, Garghentino RR, Battaglia MA, Panarisi AM, Di Rocco M, Balottin U, Bresolin N, Bassi MT, Borgatti R (2006) Agenesis of the corpus callosum: clinical and genetic study in 63 young patients. Pediatr Neurol 34(3):186–193. doi:10.1016/j.pediatrneurol.2005.08.008

    Article  PubMed  Google Scholar 

  • Bonnet C, Andrieux J, Béri-Dexheimer M, Leheup B, Boute O, Manouvrier S, Delobel B, Copin H, Receveur A, Mathieu M, Thiriez G, Le Caignec C, David A, de Blois MC, Malan V, Philippe A, Cormier-Daire V, Colleaux L, Flori E, Dollfus H, Pelletier V, Thauvin-Robinet C, Masurel-Paulet A, Faivre L, Tardieu M, Bahi-Buisson N, Callier P, Mugneret F, Edery P, Jonveaux P, Sanlaville D (2010) Microdeletion at chromosome 4q21 defines a new emerging syndrome with marked growth restriction, mental retardation and absent or severely delayed speech. J Med Genet 47(6):377–384. doi:10.1136/jmg.2009.071902

    Article  CAS  PubMed  Google Scholar 

  • Chui JV, Weisfeld-Adams JD, Tepperberg J, Mehta L (2011) Clinical and molecular characterization of chromosome 7p22.1 microduplication detected by array CGH. Am J Med Genet A 155A(10):2508–2511

    Article  PubMed  Google Scholar 

  • Ciuladaitė Z, Kasnauskienė J, Cimbalistienė L, Preikšaitienė E, Patsalis PC, Kučinskas V (2011) Mental retardation and autism associated with recurrent 16p11.2 microdeletion: incomplete penetrance and variable expressivity. J Appl Genet 52(4):443–449. doi:10.1007/s13353-011-0063-z

    Article  PubMed  Google Scholar 

  • Gijsbers AC, Lew JY, Bosch CA, Schuurs-Hoeijmakers JH, van Haeringen A, den Hollander NS, Kant SG, Bijlsma EK, Breuning MH, Bakker E, Ruivenkamp CA (2009) A new diagnostic workflow for patients with mental retardation and/or multiple congenital abnormalities: test arrays first. Eur J Hum Genet 17(11):1394–1402. doi:10.1038/ejhg.2009.74

    Article  PubMed Central  PubMed  Google Scholar 

  • Hochstenbach R, Buizer-Voskamp JE, Vorstman JA, Ophoff RA (2011) Genome arrays for the detection of copy number variations in idiopathic mental retardation, idiopathic generalized epilepsy and neuropsychiatric disorders: lessons for diagnostic workflow and research. Cytogenet Genome Res 135(3–4):174–202. doi:10.1159/000332928

    Article  CAS  PubMed  Google Scholar 

  • Kagurasho M, Yamada S, Uwabe C, Kose K, Takakuwa T (2012) Movement of the external ear in human embryo. Head Face Med 8:2. doi:10.1186/1746-160X-8-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Kasnauskiene J, Ciuladaite Z, Preiksaitiene E, Matulevičienė A, Alexandrou A, Koumbaris G, Sismani C, Pepalytė I, Patsalis PC, Kučinskas V (2012) A single gene deletion on 4q28.3: PCDH18—a new candidate gene for intellectual disability? Eur J Med Genet 55(4):274–277. doi:10.1016/j.ejmg.2012.02.010

    Article  PubMed  Google Scholar 

  • Kasnauskiene J, Cimbalistiene L, Utkus A, Ciuladaite Z, Preiksaitiene E, Pečiulytė A, Kučinskas V (2013) Two new de novo interstitial duplications covering 2p14-p22.1: clinical and molecular analysis. Cytogenet Genome Res 139(1):52–58. doi:10.1159/000342544

    Article  CAS  PubMed  Google Scholar 

  • Krepischi AC, Knijnenburg J, Bertola DR, Kim CA, Pearson PL, Bijlsma E, Szuhai K, Kok F, Vianna-Morgante AM, Rosenberg C (2010) Two distinct regions in 2q24.2-q24.3 associated with idiopathic epilepsy. Epilepsia 51(12):2457–2460. doi:10.1111/j.1528-1167.2010.02742.x

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Iafrate AJ, Brothman AR (2007) Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat Genet 39(7 Suppl):S48–S54. doi:10.1038/ng2092

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, Sullivan CM, Sahoo T, Yatsenko SA, Bacino CA, Stankiewicz P, Ou Z, Chinault AC, Beaudet AL, Lupski JR, Cheung SW, Ward PA (2007) Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One 2(3):e327. doi:10.1371/journal.pone.0000327

    Article  PubMed Central  PubMed  Google Scholar 

  • Magri C, Piovani G, Pilotta A, Michele T, Buzi F, Barlati S (2011) De novo deletion of chromosome 2q24.2 region in a mentally retarded boy with muscular hypotonia. Eur J Med Genet 54(3):361–364. doi:10.1016/j.ejmg.2010.12.011

    Article  PubMed  Google Scholar 

  • Majnemer A, Shevell MI (1995) Diagnostic yield of the neurologic assessment of the developmentally delayed child. J Pediatr 127(2):193–199

    Article  CAS  PubMed  Google Scholar 

  • Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, Ledbetter DH (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86(5):749–764. doi:10.1016/j.ajhg.2010.04.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poot M, Beyer V, Schwaab I, Damatova N, Van’t Slot R, Prothero J, Holder SE, Haaf T (2010) Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder. Neurogenetics 11(1):81–89. doi:10.1007/s10048-009-0205-1

    Article  PubMed  Google Scholar 

  • Preiksaitiene E, Kasnauskiene J, Ciuladaite Z, Tumiene B, Patsalis PC, Kučinskas V (2012a) Clinical and molecular characterization of a second case of 7p22.1 microduplication. Am J Med Genet A 158A(5):1200–1203. doi:10.1002/ajmg.a.35300

    Article  PubMed  Google Scholar 

  • Preiksaitiene E, Männik K, Dirse V, Utkus A, Ciuladaite Z, Kasnauskiene J, Kurg A, Kučinskas V (2012b) A novel de novo 1.8 Mb microdeletion of 17q21.33 associated with intellectual disability and dysmorphic features. Eur J Med Genet 55(11):656–659. doi:10.1016/j.ejmg.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  • Sajan SA, Fernandez L, Nieh SE, Rider E, Bukshpun P, Wakahiro M, Christian SL, Rivière JB, Sullivan CT, Sudi J, Herriges MJ, Paciorkowski AR, Barkovich AJ, Glessner JT, Millen KJ, Hakonarson H, Dobyns WB, Sherr EH (2013) Both rare and de novo copy number variants are prevalent in agenesis of the corpus callosum but not in cerebellar hypoplasia or polymicrogyria. PLoS Genet 9(10):e1003823. doi:10.1371/journal.pgen.1003823

    Article  PubMed Central  PubMed  Google Scholar 

  • Schinzel A (1993) Karyotype–phenotype correlations in autosomal chromosomal aberrations. Prog Clin Biol Res 384:19–31

    CAS  PubMed  Google Scholar 

  • Shaffer LG, Kashork CD, Saleki R, Rorem E, Sundin K, Ballif BC, Bejjani BA (2006) Targeted genomic microarray analysis for identification of chromosome abnormalities in 1500 consecutive clinical cases. J Pediatr 149(1):98–102. doi:10.1016/j.jpeds.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  • Shoukier M, Klein N, Auber B, Wickert J, Schröder J, Zoll B, Burfeind P, Bartels I, Alsat EA, Lingen M, Grzmil P, Schulze S, Keyser J, Weise D, Borchers M, Hobbiebrunken E, Röbl M, Gärtner J, Brockmann K, Zirn B (2013) Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants? Clin Genet 83(1):53–65. doi:10.1111/j.1399-0004.2012.01850.x

    Article  CAS  PubMed  Google Scholar 

  • Vulto-van Silfhout AT, Hehir-Kwa JY, van Bon BW, Schuurs-Hoeijmakers JH, Meader S, Hellebrekers CJ, Thoonen IJ, de Brouwer AP, Brunner HG, Webber C, Pfundt R, de Leeuw N, de Vries BB (2013) Clinical significance of de novo and inherited copy-number variation. Hum Mutat 34(12):1679–1687. doi:10.1002/humu.22442

    Article  CAS  PubMed  Google Scholar 

  • Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, Stray SM, Rippey CF, Roccanova P, Makarov V, Lakshmi B, Findling RL, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler EE, Meltzer PS, Nelson SF, Singleton AB, Lee MK, Rapoport JL, King MC, Sebat J (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320(5875):539–543. doi:10.1126/science.1155174

    Article  CAS  PubMed  Google Scholar 

  • Weise A, Mrasek K, Klein E, Mulatinho M, Llerena JC Jr, Hardekopf D, Pekova S, Bhatt S, Kosyakova N, Liehr T (2012) Microdeletion and microduplication syndromes. J Histochem Cytochem 60(5):346–358. doi:10.1369/0022155412440001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank to the clinical geneticists of the Centre for Medical Genetics at Vilnius University Hospital Santariškių Clinics and our partners from the Cyprus Institute of Neurology and Genetics, Alma Mater Studiorum (University of Bologna), and University of Tartu for collaboration. The research leading to these results was funded by the European Community’s Seventh Framework Programme [FP7/2007–2013] under grant agreement no. 223692, CHERISH project, the Research Council of Lithuania National Research Programme “Chronic Non-Infectious Diseases” under grant agreement no. LIG-12/2010, the PROGENET project, and the Lithuanian–Swiss cooperation program to reduce economic and social disparities within the enlarged European Union under project agreement no. CH-3-ŠMM-01/04, UNIGENE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egle Preiksaitiene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preiksaitiene, E., Molytė, A., Kasnauskiene, J. et al. Considering specific clinical features as evidence of pathogenic copy number variants. J Appl Genetics 55, 189–196 (2014). https://doi.org/10.1007/s13353-014-0197-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-014-0197-x

Keywords

Navigation