Skip to main content
Log in

Estimation of the Aerosol Radiative Effect over the Tibetan Plateau Based on the Latest CALIPSO Product

  • Special Collection on Aerosol-Cloud-Radiation Interactions
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Based on the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evaluated and the aerosol radiative effect is also estimated in this study. As there are still some missing aerosol data points in the daytime CALIPSO Version 4.10 L2 product, this study re-calculated the aerosol extinction coefficient to explore the aerosol radiative effect over the TP based on the CALIPSO Level 1 (L1) and CloudSat 2B-CLDCLASS-LIDAR products. The energy budget estimation obtained by using the AODs (aerosol optical depths) from calculated aerosol extinction coefficient as an input to a radiative transfer model shows better agreement with the Earth’s Radiant Energy System (CERES) and CloudSat 2B-FLXHR-LIDAR observations than that with the input of AODs from aerosol extinction coefficient from CALIPSO Version 4.10 L2 product. The radiative effect and heating rate of aerosols over the TP are further simulated by using the calculated aerosol extinction coefficient. The dust aerosols may heat the atmosphere by retaining the energy in the layer. The instantaneous heating rate can be as high as 5.5 K day–1 depending on the density of the dust layers. Overall, the dust aerosols significantly affect the radiative energy budget and thermodynamic structure of the air over the TP, mainly by altering the shortwave radiation budget. The significant influence of dust aerosols over the TP on the radiation budget may have important implications for investigating the atmospheric circulation and future regional and global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, A. S., O. B. Toon, D. E. Stevens, et al.,2000: Reduction of tropical cloudiness by soot. Science, 288, 1042–1047, doi: 10.1126/science.288.5468.1042.

    Article  Google Scholar 

  • Adams, A. M., J. M. Prospero, and C. D. Zhang, 2012: CALIPSOderived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents. J. Climate, 25, 6862–6879, doi: 10.1175/JCLI-D-11-00672.1.

    Article  Google Scholar 

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230, doi: 10.1126/science. 245.4923.1227.

    Article  Google Scholar 

  • Charlson, R. J., S. E. Schwartz, J. M. Hales, et al.,1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430, doi: 10.1126/science.255.5043.423.

    Article  Google Scholar 

  • Chen, B., J. Huang, P. Minnis, et al.,2010: Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241–4251, doi: 10.5194/acp-10-4241-2010.

    Article  Google Scholar 

  • Chen, B., P. Zhang, B. D. Zhang, et al.,2014: An overview of passive and active dust detection methods using satellite measurements. J. Meteor. Res., 28, 1029–1040, doi: 10.1007/s13351-014-4032-4.

    Article  Google Scholar 

  • Chen, S. Y., J. P. Huang, C. Zhao, et al.,2013: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res. Atmos., 118, 797–812, doi: 10.1002/jgrd.50122.

    Article  Google Scholar 

  • Choi, I. J., T. Iguchi, S. W. Kim, et al.,2014: The effect of aerosol representation on cloud microphysical properties in Northeast Asia. Meteor. Atmos. Phys., 123, 181–194, doi: 10.1007/s00703-013-0288-y.

    Article  Google Scholar 

  • D'Almeida, G. A., P. Koepke, and E. P. Shettle, 2005: Atmospheric aerosols: Global climatology and radiative characteristics. J. Med. Microbiol., 54, 55–61.

    Article  Google Scholar 

  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156, doi: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    Article  Google Scholar 

  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025, doi: 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    Article  Google Scholar 

  • Garnier, A., J. Pelon, M. A. Vaughan, et al.,2015: Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans. Atmos. Meas. Tech., 8, 2759–2774, doi: 10.5194/amt-8-2759-2015.

    Article  Google Scholar 

  • Ge, J. M., J. P. Huang, C. P. Xu, et al.,2014: Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective. J. Geophys. Res. Atmos., 119, 11772–11783, doi: 10.1002/2014JD022280.

    Article  Google Scholar 

  • Guo, J. P., X. Y. Zhang, Y. R. Wu, et al.,2011: Spatiotemporal variation trends of satellite-based aerosol optical depth in China during 1980–2008. Atmos. Environ., 45, 6802–6811, doi: 10.1016/j.atmosenv.2011.03.068.

    Article  Google Scholar 

  • Guo, J. P., H. Liu, F. Wang, et al.,2016: Three-dimensional structure of aerosol in China: A perspective from multi-satellite observations. Atmos. Res., 178–179, 580–589, doi: 10.1016/j.atmosres.2016.05.010.

    Article  Google Scholar 

  • Henderson, D. S., T. L’Ecuyer, G. Stephens, et al.,2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853–871, doi: 10.1175/JAMC-D-12-025.1.

    Article  Google Scholar 

  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831–844, doi: 10.1175/1520-0477(1998)079 <0831:OPOAAC>2.0.CO;2.

    Article  Google Scholar 

  • Huang, J., Q. Fu, J. Su, et al.,2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu–Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011–4021, doi: 10.5194/acp-9-4011-2009.

    Article  Google Scholar 

  • Huang, J. P., P. Minnis, Y. H. Yi, et al.,2007: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, doi: 10.1029/2007GL029938.

    Article  Google Scholar 

  • Huang, J. P., P. Minnis, B. Chen, et al.,2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos., 113, D23212, doi: 10.1029/2008JD010620.

    Article  Google Scholar 

  • Huang, J. P., T. H. Wang, W. C. Wang, et al.,2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11398–11416, doi: 10.1002/2014JD021796.

    Article  Google Scholar 

  • Jia, R., Y. Z. Liu, B. Chen, et al.,2015: Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ., 123, 210–219, doi: 10.1016/j.atmosenv.2015.10.038.

    Article  Google Scholar 

  • Kim, D.-H., B. J. Sohn, T. Nakajima, et al.,2005: Aerosol radiative forcing over East Asia determined from ground-based solar radiation measurements. J. Geophys. Res. Atmos., 110, D10S22, doi: 10.1029/2004JD004678.

    Google Scholar 

  • Kovalev, V. A., W. M. Hao, and C. Wold, 2007: Determination of the particulate extinction-coefficient profile and the columnintegrated lidar ratios using the backscatter-coefficient and optical-depth profiles. Appl. Opt., 46, 8627–8634, doi: 10.1364/AO.46.008627.

    Article  Google Scholar 

  • Kuang, Y., C. S. Zhao, J. C. Tao, et al.,2015: Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect. Atmos. Chem. Phys., 15, 5761–5772, doi: 10.5194/acp-15-5761-2015.

    Article  Google Scholar 

  • Kuhlmann, J., and J. Quaas, 2010: How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data. Atmos. Chem. Phys., 10, 4673–4688, doi: 10.5194/acp-10-4673-2010.

    Article  Google Scholar 

  • Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855–864, doi: 10.1007/s00382-006-0114-z.

    Article  Google Scholar 

  • Lau, W. K. M., 2016: The aerosol–monsoon climate system of Asia: A new paradigm. J. Meteor. Res., 30, 1–11, doi: 10.1007/s13351-015-5999-1.

    Article  Google Scholar 

  • Lau, W. K. M., and K.-M. Kim, 2010: Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall. Geophys. Res. Lett., 37, L16705, doi: 10.1029/2010GL043255.

    Article  Google Scholar 

  • Lau, W. K. M., M.-K. Kim, K.-M. Kim, et al.,2010: Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 5, 025204, doi: 10.1088/1748-9326/5/2/025204.

    Article  Google Scholar 

  • L’Ecuyer, T. S., N. B. Wood, T. Haladay, et al.,2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res. Atmos., 113, D00A15, doi: 10.1029/2008JD009951.

    Google Scholar 

  • Li, H. J., W. Zheng, and Q. Gong, 2013: An analysis on detection of a sand–dust weather event over Taklimakan Desert based on polarization micro-pulse lidar. Desert Oasis Meteor., 7, 1–5. (in Chinese)

    Google Scholar 

  • Li, Z. Q., J. P. Guo, A. J. Ding, et al.,2017: Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev., 4, 810–833, doi: 10.1093/nsr/nwx117.

    Article  Google Scholar 

  • Liu, Y., Y. Sato, R. Jia, et al.,2015: Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmos. Chem. Phys., 15, 12581–12594, doi: 10.5194/acp-15-12581-2015.

    Article  Google Scholar 

  • Liu, Z. Y., D. Liu, J. P. Huang, et al.,2008a: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys., 8, 5045–5060, doi: 10.5194/acp-8-5045-2008.

    Article  Google Scholar 

  • Liu, Z. Y., A. Omar, M. Vaughan, et al.,2008b: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. J. Geophys. Res. Atmos., 113, D07207, doi: 10.1029/2007JD008878.

    Google Scholar 

  • Müller, D., K. Franke, A. Ansmann, et al.,2003: Indo-Asian pollution during INDOEX: Microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations. J. Geophys. Res. Atmos., 108, 4600, doi: 10.1029/2003JD003538.

    Article  Google Scholar 

  • Mukai, M., T. Nakajima, and T. Takemura, 2008: A study of anthropogenic impacts of the radiation budget and the cloud field in East Asia based on model simulations with GCM. J. Geophys. Res. Atmos., 113, D12211, doi: 10.1029/2007JD 009325.

    Article  Google Scholar 

  • Nakajima, T., S. C. Yoon, V. Ramanathan, et al.,2007: Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in East Asia. J. Geophys. Res. Atmos., 112, D24S91, doi: 10.1029/2007JD009009.

    Article  Google Scholar 

  • Omar, A. H., D. M. Winker, M. A. Vaughan, et al.,2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 1994–2014, doi: 10.1175/2009JTECHA1231.1.

    Article  Google Scholar 

  • Omar, A. H., J. L. Tackett, M. A. Vaughan, et al.,2016: Enhancements to the CALIOP aerosol subtyping and lidar ratio selection algorithms for level II Version 4. AGU Fall Meeting, San Francisco, 12–1. December, American Geophysical Union.

    Google Scholar 

  • Qian, Y., M. G. Flanner, L. R. Leung, et al.,2011: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys., 11, 1929–1948, doi: 10.5194/acp-11-1929-2011.

    Article  Google Scholar 

  • Qian, Y. F., Y. Zhang, Y. Y. Huang, et al.,2004: The effects of the thermal anomalies over the Tibetan Plateau and its vicinities on climate variability in China. Adv. Atmos. Sci., 21, 369–381, doi: 10.1007/BF02915565.

    Article  Google Scholar 

  • Ramanathan, V., M. V. Ramana, G. Roberts, et al.,2007: Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448, 575–578, doi: 10.1038/nature06019.

    Article  Google Scholar 

  • Rose, F. G., and T. P. Charlock, 2002: New Fu–Liou code tested with ARM Raman lidar and CERES in pre-CALIPSO sensitivity study. 11th Conference on Atmospheric Radiation, Ogden, Utah, USA, 7 June, Amer. Meteor. Soc.

    Google Scholar 

  • Rosenfeld, D., S. Sherwood, R. Wood, et al.,2014: Climate effects of aerosol–cloud interactions. Science, 343, 379–380, doi: 10.1126/science.1247490.

    Article  Google Scholar 

  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 1848–1866, doi: 10.1175/1520-0477(1991)2.0. co;2.

    Article  Google Scholar 

  • Satheesh, S. K., V. Ramanathan, X. Li-Jones, et al.,1999: A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data. J. Geophys. Res. Atmos., 104, 27421–27440, doi: 10.1029/1999JD900478.

    Article  Google Scholar 

  • Satheesh, S. K., V. Vinoj, S. S. Babu, et al.,2009: Vertical distribution of aerosols over the east coast of India inferred from airborne LIDAR measurements. Ann. Geophys., 27, 4157–4169, doi: 10.5194/angeo-27-4157-2009.

    Article  Google Scholar 

  • Seiki, T., and T. Nakajima, 2014: Aerosol effects of the condensation process on a convective cloud simulation. J. Atmos. Sci., 71, 833–853, doi: 10.1175/JAS-D-12-0195.1.

    Article  Google Scholar 

  • Sekiguchi, M., T. Nakajima, K. Suzuki, et al.,2003: A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res. Atmos., 108, 4699, doi: 10.1029/2002JD003359.

    Article  Google Scholar 

  • Shen, L. L., L. F. Sheng, and J. J. Chen, 2010: Preliminary analysis of the spatial distribution of the dust aerosol in a heavy dust storm. J. Desert Res., 30, 1483–1490. (in Chinese)

    Google Scholar 

  • Su, J., J. P. Huang, Q. Fu, et al.,2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu–Liou radiative model and CERES measurements. Atmos. Chem. Phys., 8, 2763–2771, doi: 10.5194/acp-8-2763-2008.

    Article  Google Scholar 

  • Takamura, T., N. Sugimoto, A. Shimizu, et al.,2007: Aerosol radiative characteristics at Gosan, Korea, during the Atmospheric Brown Cloud East Asian Regional Experiment 2005. J. Geophys. Res. Atmos., 112, D22S36, doi: 10.1029/2007JD008506.

    Article  Google Scholar 

  • Tegen, I., A. A. Lacis, and I. Fung, 1996: The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–422, doi: 10.1038/380419a0.

    Article  Google Scholar 

  • Toth, T. D., J. L. Zhang, J. R. Campbell, et al.,2016: Temporal variability of aerosol optical thickness vertical distribution observed from CALIOP. J. Geophys. Res. Atmos., 121, 9117–9139, doi: 10.1002/2015JD024668.

    Article  Google Scholar 

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152, doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    Article  Google Scholar 

  • Uno, I., H. Amano, S. Emori, et al.,2001: Trans-Pacific yellow sand transport observed in April 1998. A numerical simulation. J. Geophys. Res. Atmos., 106, 18331–18344, doi: 10.1029/2000JD900748.

    Article  Google Scholar 

  • Wang, W. C., J. P. Huang, T. Zhou, et al.,2013: Estimation of radiative effect of a heavy dust storm over northwest China using Fu–Liou model and ground measurements. J. Quant. Spectrosc. Radiat. Transf., 122, 114–126, doi: 10.1016/j.jqsrt.2012.10.018.

    Article  Google Scholar 

  • Winker, D. M., M. A. Vaughan, A. Omar, et al.,2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 2310–2323, doi: 10.1175/2009jtecha1281.1.

    Article  Google Scholar 

  • Wonsick, M. M., R. T. Pinker, and Y. Ma, 2014: Investigation of the “elevated heat pump” hypothesis of the Asian monsoon using satellite observations. Atmos. Chem. Phys., 14, 8749–8761, doi: 10.5194/acp-14-8749-2014.

    Article  Google Scholar 

  • Wu, G. X., X. Liu, Q. Zhang, et al.,2002: Progresses in the study of the climate impacts of the elevated heating over the Tibetan Plateau. Climatic Environ. Res., 7, 184–201. (in Chinese)

    Google Scholar 

  • Wu, G. X., J. Y. Mao, A. M. Duan, et al.,2006: Current progresses in study of impacts of the Tibetan Plateau on Asian summer climate. Acta Meteor. Sinica, 20, 144–158.

    Google Scholar 

  • Xia, X. G., P. C. Wang, Y. S. Wang, et al.,2008: Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophys. Res. Lett., 35, L16804, doi: 10.1029/2008GL034981.

    Article  Google Scholar 

  • Yang, K., Y.-Y. Chen, and J. Qin, 2009: Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol. Earth Syst. Sci., 13, 687–701, doi: 10.5194/hess-13-687-2009.

    Article  Google Scholar 

  • Yang, W. Y., D. Z. Ye, and G. X. Wu, 1992: The influence of the Tibetan Plateau on the thermal and circulation fields over East Asia in summer. II: Main features of the local circulation fields and the large-scale vertical circulation fields. Chinese J. Atmos. Sci., 16, 287–301. (in Chinese)

    Google Scholar 

  • Yasunari, T. J., P. Bonasoni, P. Laj, et al.,2010: Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory-Pyramid data and snow albedo changes over Himalayan glaciers. Atmos. Chem. Phys., 10, 6603–6615, doi: 10.5194/acp-10-6603-2010.

    Article  Google Scholar 

  • Young, S. A., and M. A. Vaughan, 2009: The retrieval of profiles of particulate extinction from Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 1105–1119, doi: 10.1175/2008JTECHA1221.1.

    Article  Google Scholar 

  • Zhang, H., J. H. Ma, and Y. F. Zheng, 2010: Modeling study of the global distribution of radiative forcing by dust aerosol. Acta Meteor. Sinica, 24, 558–570.

    Google Scholar 

  • Zhou, L. B., J. H. Zhu, H. Zou, et al.,2013: Atmospheric moisture distribution and transport over the Tibetan Plateau and the impacts of the South Asian summer monsoon. Acta Meteor. Sinica, 27, 819–831, doi: 10.1007/s13351-013-0603-z.

    Article  Google Scholar 

  • Zhu, Y. X., Y. H. Ding, and H. G. Xu, 2008: Decadal relationship between atmospheric heat source and winter–spring snow cover over the Tibetan Plateau and rainfall in East China. Acta. Meteor. Sinica, 22, 303–316.

    Google Scholar 

Download references

Acknowledgements

The CALIPSO, CloudSat, and CERES data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center, and the authors gratefully acknowledge their efforts in making these data available online. We also gratefully acknowledge Q. Fu and K. N. Liou for providing the Fu–Liou model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhi Liu.

Additional information

Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA2006010301), National Natural Science Foundation of China (91737101, 41475095, and 41405010), Fundamental Research Funds for Central Universities (lzujbky-2017-63), and China 111 Project (B13045).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, R., Liu, Y., Hua, S. et al. Estimation of the Aerosol Radiative Effect over the Tibetan Plateau Based on the Latest CALIPSO Product. J Meteorol Res 32, 707–722 (2018). https://doi.org/10.1007/s13351-018-8060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-8060-3

Key words

Navigation