Skip to main content
Log in

Sensitivity Experiments on the Poleward Shift of Tropical Cyclones over the Western North Pacific under Warming Ocean Conditions

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Recent studies found that in the context of global warming, the observed tropical cyclones (TCs) exhibit significant poleward migration trend in terms of the mean latitude where TCs reach their lifetime-maximum intensity in the western North Pacific (WNP). This poleward migration of TC tracks can be attributed to not only anthropogenic forcing (e.g., continuous increase of sea surface temperature (SST)), but also impacts of other factors (e.g., natural variability). In the present study, to eliminate the impacts of other factors and thus focus on the impact of unvaried SST on climatological WNP TC tracks, the mesoscale Weather Research and Forecasting (WRF) model is used to conduct a suite of idealized sensitivity experiments with increased SST. Comparisons among the results of these experiments show the possible changes in climatological TC track, TC track density, and types of TC track in the context of SST increase. The results demonstrate that under the warmer SST conditions, the climatological mean TC track systematically shifts poleward significantly in the WNP, which is consistent with the previous studies. Meanwhile, the ocean warming also leads to the decreased (increased) destructive potential of TCs in low (middle) latitudes, and thus northward migration of the region where TCs have the largest impact. Further results imply the possibility that under the ocean warming, the percentage of TCs with westward/northwestward tracks decreases/increases distinctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 2023–2046, doi: 10.1175/2007MWR1858.1.

    Article  Google Scholar 

  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 9880–9902, doi: 10.1175/JCLI-D-12-00549.1.

    Article  Google Scholar 

  • Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, 57, 589–604, doi: 10.3402/tellusa.v57i4.14705.

    Article  Google Scholar 

  • Cox, P. M., R. A. Betts, C. D. Jones, et al., 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187, doi: 10.1038/35041539.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model. J. Atmos. Sci., 46, 3077–3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    Article  Google Scholar 

  • Elsner, J. B., 2003: Tracking hurricanes. Bull. Amer. Meteor. Soc., 84, 353–356, doi: 10.1175/BAMS-84-3-353.

    Article  Google Scholar 

  • Elsner, J. B., J. C. Trepanier, S. E. Strazzo, et al., 2012: Sensitivity of limiting hurricane intensity to ocean warmth. Geophys. Res. Lett., 39, 17702, doi: 10.1029/2012GL053002.

    Article  Google Scholar 

  • Emanuel, K., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139–1152, doi: 10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    Article  Google Scholar 

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605, doi: 10.1175/1520-0469(1986)043<0585:AASITF> 2.0.CO;2.

    Google Scholar 

  • Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347–368, doi: 10.1175/BAMS-89-3-347.

    Article  Google Scholar 

  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 587–590, doi: 10.1029/2002GL0153.

    Article  Google Scholar 

  • Henderson-Sellers, A., H. Zhang, G. Berz, et al., 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteor. Soc., 79, 19–38, doi: 10.1175/1520-0477(1998)079<0019:TCAGCC>2.0.CO;2.

    Article  Google Scholar 

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541, doi: 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    Article  Google Scholar 

  • Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481–1496, doi: 10.1002/Qj.665.

    Article  Google Scholar 

  • Hong, S.-Y., H.-M. H. Juang, and Q. Y. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 2621–2639, doi: 10.1175/1520-0493 (1998)126<2621:IOPCSF>2.0.CO;2.

    Article  Google Scholar 

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, doi: 10.1175/Mwr3199.1.

    Article  Google Scholar 

  • Kim, J.-H., C.-H. Ho, H.-S. Kim, et al., 2012: 2010 western North Pacific typhoon season: Seasonal overview and forecast using a track-pattern-based model. Wea. Forecasting, 27, 730–743, doi: 10.1175/waf-d-11-00109.1.

    Article  Google Scholar 

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, et al., 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363–376, doi: 10.1175/2009BAMS2755.1.

    Article  Google Scholar 

  • Knutson, T. R., 2010: Tropical cyclones and climate change: An Indian Ocean perspective. Indian Ocean Tropical Cyclones and Climate Change, Y. Charabi, Ed., Springer, Dordrecht, 47–49, doi: 10.1007/978-90-481-3109-9_7.

    Google Scholar 

  • Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349–352, doi: 10.1038/nature13278.

    Article  Google Scholar 

  • Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. J. Climate, 29, 5725–5739, doi: 10.1175/JCLI-D-16-0076.1.

    Article  Google Scholar 

  • Lau, K.-M., and H. Y. Weng, 1999: Interannual, decadal–interdecadal, and global warming signals in sea surface temperature during 1955–97. J. Climate, 12, 1257–1267, doi: 10.1175/1520-0442(1999)012<1257:IDIAGW>2.0.CO;2.

    Article  Google Scholar 

  • Lau, W. K. M., J. J. Shi, W. K. Tao, et al., 2016: What would happen to superstorm Sandy under the influence of a substantially warmer Atlantic Ocean? Geophys. Res. Lett., 43, 802–811, doi: 10.1002/2015GL067050.

    Article  Google Scholar 

  • Li, T., M. H. Kwon, M. Zhao, et al., 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804, doi: 10.1029/2010GL045124.

    Google Scholar 

  • MacQueen, J., 1967: Some methods for classification and analysis of multivariate observations. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, 16 January, University of California Press, 281–297

    Google Scholar 

  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statist., 18, 50–60, doi: 10.1214/aoms/1177730491.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: TMRR, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, doi: 10.1029/97JD00237.

    Article  Google Scholar 

  • Nakamura, J., U. Lall, Y. Kushnir, et al., 2009: Classifying North Atlantic tropical cyclone tracks by mass moments. J. Climate, 22, 5481–5494, doi: 10.1175/2009JCLI2828.1.

    Article  Google Scholar 

  • Nakamura, J., S. J. Camargo, A. H. Sobel, et al., 2017: Western North Pacific tropical cyclone model tracks in present and future climates. J. Geophys. Res. Atmos., 122, 9721–9744, doi: 10.1002/2017JD027007.

    Article  Google Scholar 

  • Strazzo, S., J. B. Elsner, J. C. Trepanier, et al., 2013a: Frequency, intensity, and sensitivity to sea surface temperature of North Atlantic tropical cyclones in best-track and simulated data. J. Adv. Model. Earth Syst., 5, 500–509, doi: 10.1002/jame. 20036.

    Article  Google Scholar 

  • Strazzo, S., J. B. Elsner, T. LaRow, et al., 2013b: Observed versus GCM-generated local tropical cyclone frequency: Comparisons using a spatial lattice. J. Climate, 26, 8257–8268, doi: 10.1175/JCLI-D-12-00808.1.

    Article  Google Scholar 

  • Sugi, M., H. Murakami, and J. Yoshimura, 2009: A reduction in global tropical cyclone frequency due to global warming. Sci. Online Lett. Atmos., 5, 164–167, doi: 10.2151/sola.2009-042.

    Google Scholar 

  • Sun, Y., Z. Zhong, L. Yi, et al., 2015a: Dependence of the relationship between the tropical cyclone track and western Pacific subtropical high intensity on initial storm size: A numerical investigation. J. Geophys. Res. Atmos., 120, 11451–11467, doi: 10.1002/2015JD023716.

    Article  Google Scholar 

  • Sun, Y., Z. Zhong, H. Dong, et al., 2015b: Sensitivity of tropical cyclone track simulation over the western North Pacific to different heating/drying rates in the Betts–Miller–Janjić scheme. Mon. Wea. Rev., 143, 3478–3494, doi: 10.1175/MWR-D-14-00340.1.

    Article  Google Scholar 

  • Sun, Y., Z. Zhong, T. Li, et al., 2017a: Impact of ocean warming on tropical cyclone track over the western North Pacific: A numerical investigation based on two case studies. J. Geophys. Res., 122, 8617–8630, doi: 10.1002/2017JD026959.

    Article  Google Scholar 

  • Sun, Y., Z. Zhong, T. Li, et al., 2017b: Impact of ocean warming on tropical cyclone size and its destructiveness. Sci. Rep., 7, 8154, doi: 10.1038/s41598-017-08533-6.

    Article  Google Scholar 

  • Tonkin, H., C. Landsea, G. J. Holland, et al., 1997: Tropical cyclones and climate change: A preliminary assessment. Assessing Climate Change: Results from the Model Evaluation Consortium for Climate Assessment, W. Howe and A. Henderson-Sellers, Eds., Gordon and Breach, Sydney, 327–360

    Google Scholar 

  • Tsutsui, J., and A. Kasahara, 2000: The role of cumulus schemes in the reproducibility of tropical cyclones by the NCAR Community Climate Model (CCM3). Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc., 350–351

    Google Scholar 

  • Ueno, M., and J. Yoshimura, 2002: Impact of physical processes in a GCM on the frequency of tropical cyclones. WGNE Blue Book 2002: Research Activities in Atmospheric and Oceanic Modelling, WMO/TD-No. 1105, 0429–0430

    Google Scholar 

  • Vitart, F., J. L. Anderson, J. Sirutis, et al., 2001: Sensitivity of tropical storms simulated by a general circulation model to changes in cumulus parametrization. Quart. J. Roy. Meteor. Soc., 127, 25–51, doi: 10.1002/qj.49712757103.

    Article  Google Scholar 

  • Wang, Y. X., Y. Sun, Q. F. Liao, et al., 2017: Impact of initial storm intensity and size on the simulation of tropical cyclone track and western Pacific subtropical high extent. J. Meteor. Res., 31, 946–954, doi: 10.1007/s13351-017-7024-3.

    Article  Google Scholar 

  • Webster, P. J., G. J. Holland, J. A. Curry, et al., 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846, doi: 10.1126/science. 1116448.

    Article  Google Scholar 

  • Wu, L. G., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 1686–1698, doi:1 0.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2.

    Article  Google Scholar 

  • Wu, L. G., B. Wang, and S. Q. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi: 10.1029/2005GL022937.

    Google Scholar 

  • Ying, M., E.-J. Cha, and H. J. Kwon, 2011: Comparison of three western North Pacific tropical cyclone best track datasets in a seasonal context. J. Meteor. Soc. Japan, 89, 211–224, doi: 10.2151/jmsj.2011-303.

    Article  Google Scholar 

  • Yoshimura, J., M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405–428, doi: 10.2151/jmsj.84.405.

    Article  Google Scholar 

  • Yu, J. H., Y. Q. Zheng, Q. S. Wu, et al., 2016: K-means clustering for classification of the northwestern Pacific tropical cyclone tracks. J. Trop. Meteor., 22, 127–135, doi: 10.16555/j.1006-8775.2016.02.003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhong.

Additional information

Supported by the National Natural Science Foundation of China (41430426 and 41605072) and Natural Science Foundation of Jiangsu (BK20160768).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Sun, Y., Zhong, Z. et al. Sensitivity Experiments on the Poleward Shift of Tropical Cyclones over the Western North Pacific under Warming Ocean Conditions. J Meteorol Res 32, 560–570 (2018). https://doi.org/10.1007/s13351-018-8047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-8047-0

Key words

Navigation