Skip to main content
Log in

Statistics of the ZR Relationship for Strong Convective Weather over the Yangtze–Huaihe River Basin and Its Application to Radar Reflectivity Data Assimilation for a Heavy Rain Event

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The relationship between the radar reflectivity factor (Z) and the rainfall rate (R) is recalculated based on radar observations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze–Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The ZR relationship is combined with an empirical qrR relationship to obtain a new Zqr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational (3DVar) data assimilation system of the Weather Research and Forecasting (WRF) model to improve the analysis and prediction of severe convective weather over the Yangtze–Huaihe River basin. The performance of the corrected reflectivity operator used in the WRF 3DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z–R relationship. Three experiments are conducted with the WRF model and its 3DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected reflectivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better performance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original reflectivity operator. This suggests that the new statistical ZR relationship is more suitable for predicting severe convective weather over the Yangtze–Huaihe River basin than the ZR relationships currently in use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamba, B., A. D. Ochou, E. P. Zahiri, et al., 2014: Consistency in Z–R relationship variability regardless precipitating systems, climatic zones observed from two types of disdrometer. Atmos. Climate Sci., 4, 52479, doi: 10.4236/acs.2014.45083.

    Google Scholar 

  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, Chicago, 324 pp.

    Google Scholar 

  • Bent, A. E., 1943: Radar Echoes from Atmospheric Phenomena. Massachusetts Institute of Technology, Radiation Laboratory, Cambridge, 173 pp.

    Google Scholar 

  • Caracciolo, C., F. Porcù, and F. Prodi, 2008: Precipitation classification at mid-latitudes in terms of drop size distribution parameters. Adv. Geosci., 16, 11–17, doi: 10.5194/adgeo-16-11-2008.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, doi: 10.1175/1520-0493(2001)129 <0569:CAALSH>2.0.CO;2.

    Google Scholar 

  • Chen, Q. P., J. H. Yu, L. Z. Yang, et al., 2006: Analysis of quantitative precipitation estimation based on doppler radar data in pre-rainy season in northern and central Fujian. Meteor. Mon., 32, 56–61, doi: 10.3969/j.issn.1000-0526.2006.04.010. (in Chinese)

    Google Scholar 

  • Chi, Z. P., X. Liu, and J. M. Chen, 2000: Calculation and analysis of Z–I relation among precipitation processes caused by sheet cloud in spring and autumn. Meteor. Mon., 26, 35–37, doi: 10.3969/j.issn.1000-0526.2000.01.007. (in Chinese)

    Google Scholar 

  • Chumchean, S., 2004: Improved estimation of radar rainfall for use in hydrological modelling. Ph. D. dissertation, University of New South Wales, Sydney, Australia, 179 pp.

    Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    Article  Google Scholar 

  • Fujiwara, M., 1965: Raindrop-size distribution from individual storms. J. Atmos. Sci., 22, 585–591, doi: 10.1175/1520-0469(1965)022<0585:RSDFIS>2.0.CO;2.

    Article  Google Scholar 

  • Fulton, R. A., J. P. Breidenbach, D. J. Seo, et al., 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377–395, doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    Article  Google Scholar 

  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 38–1, doi: 10.1029/2002GL015311.

    Article  Google Scholar 

  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120, doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    Article  Google Scholar 

  • Huggel, A., W. Schmid, and A. Waldvogel, 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteor., 35, 1688–1701, doi: 10.1175/1520-0450(1996)035<1688:RSDA TR>2.0.CO;2.

    Article  Google Scholar 

  • Imai, J., 1960: Raindrop-size distribution and Z–R relationships. Proceedings of the 8th Weather Radar Conference. San Francisco, CA, 11–14 April, Amer. Meteor. Soc., 211–218.

    Google Scholar 

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945, doi:1 0.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    Article  Google Scholar 

  • Jatila, E., and T. Puhakka, 1972: Experiments on the measurement of areal rainfall by radar. Geophysica, 12, 103–125.

    Google Scholar 

  • Jones, D. M. A., 1956: Rainfall Drop Size-Distributions and Radar Reflectivity. Meteorologic Laboratory, Urbana, Illinois, 20 pp.

    Google Scholar 

  • Joss, J., and E. G. Gori, 1978: Shapes of raindrop size distributions. J. Appl. Meteor., 17, 1054–1061, doi: 10.1175/1520-0450(1978)017<1054:SORSD>2.0.CO;2.

    Article  Google Scholar 

  • Lee, D. I., M. Jang, C. H. You, et al., 2002: Kuduck Dwsr-88c radar rainfall estimation and Z–R relationship by poss during 2001 in Korea. EGS XXVII General Assembly, Nice, 21–26 April, EGU, 2242.

    Google Scholar 

  • Li, J. T., L. Guo, and H. P. Yang, 2005: A study of the formation of initial radar field in estimating areal rainfall using radar and rain-gauge. Chinese J. Atmos. Sci., 29, 1010–1020, doi: 10.3878/j.issn.1006-9895.2005.06.16. (in Chinese)

    Google Scholar 

  • List, R., 1988: A linear radar reflectivity-rainrate relationship for steady tropical rain. J. Atmos. Sci., 45, 3564–3572, doi: 10.1175/1520-0469(1988)045<3564:ALRRRF>2.0.CO;2.

    Article  Google Scholar 

  • Liu, H. Y., H. M. Xu, Z. J. Hu, et al., 2007: Application of radar reflectivity to initialization of cloud resolving mesoscale model. Part I: Retrieval of microphysical parameters and vertical velocity. Acta Meteor. Sinica, 65, 896–905, doi: 10.11676/qxxb2007.084. (in Chinese)

    Google Scholar 

  • Liu, J., Z. Z. Song, D. F. Liu, et al., 1999: Classified Z–I relationship and its application to the measurement of rainfall by weather radar over the Huaihe River basin. Scientia Meteor. Sinica, 19, 213–220. (in Chinese)

    Google Scholar 

  • Liu, X. Y., H. P. Yang, J. T. Li, et al., 2010: CINRAD radar quantitative precipitation estimation group system. Meteor. Mon., 36, 90–95, doi: 10.7519/j.issn.1000-0526.2010.04.016. (in Chinese)

    Google Scholar 

  • Lopez, P., and P. Bauer, 2007: “1D + 4DVAR” assimilation of NCEP stage-IV radar and gauge hourly precipitation data at ECMWF. Mon. Wea. Rev., 135, 2506–2524, doi: 10.1175/mwr3409.1.

    Article  Google Scholar 

  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166, doi: 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    Article  Google Scholar 

  • Marshall, J. S., W. Hitschfeld, and K. L. S. Gunn, 1955: Advances in radar weather. Adv. Geophys., 2, 1–56, doi: 10.1016/s0065-2687(08)60310-6.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: TMRR, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682, doi: 10.1029/97jd00237.

    Article  Google Scholar 

  • Moumouni, S., M. Gosset, and E. Houngninou, 2008: Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers. Geophys. Res. Lett., 35, L23807, doi: 10.1029/2008GL035755.

    Article  Google Scholar 

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763, doi: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    Article  Google Scholar 

  • Rao, T. N., D. N. Rao, K. Mohan, et al., 2001: Classification of tropical precipitating systems and associated Z–R relationships. J. Geophys. Res., 106, 17699–17711, doi: 10.1029/2000jd900836.

    Article  Google Scholar 

  • Ren, Z. H., P. Zhao, Q. Zhang, et al., 2010: Quality control procedures for hourly precipitation data from automatic weather stations in China. Meteor. Mon., 36, 123–132, doi: 10.7519/j.issn.1000-0526.2010.07.019. (in Chinese)

    Google Scholar 

  • Rogers, E., T. L. Black, D. G. Deaven, et al., 1996: Changes to the operational “early” Eta analysis/forecast system at the National Centers for Environmental Prediction. Wea. Forecasting, 11, 391–413, doi: 10.1175/1520-0434(1996)011<0391:CTTOEA> 2.0.CO;2.

    Article  Google Scholar 

  • Steiner, M., and R. A. Houze Jr., 1997: Sensitivity of the estimated monthly convective rain fraction to the choice of Z–R relation. J. Appl. Meteor., 36, 452–462, doi: 10.1175/1520-0450(1997)036<0452:SOTEMC>2.0.CO;2.

    Article  Google Scholar 

  • Stout, G. E., and E. A. Mueller, 1968: Survey of relationships between rainfall rate and radar reflectivity in the measurement of precipitation. J. Appl. Meteor., 7, 465–474, doi: 10.1175/1520-0450(1968)007<0465:SORBRR>2.0.CO;2.

    Article  Google Scholar 

  • Sun, J. Z., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, doi: 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    Google Scholar 

  • Tapiador, F. J., R. Checa, and M. de Castro, 2010: An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett., 37, L16803, doi: 10.1029/2010GL044120.

    Article  Google Scholar 

  • Wang, S. X., Z. H. Bo, J. F. Zhang, et al., 2013: Localization of Z–I relation and RPG precipitation product improvement for weather radar. Meteor. Sci. Technol., 41, 430–435, doi: 10.3969/j.issn.1671-6345.2013.03.002. (in Chinese)

    Google Scholar 

  • Wong, M. C., W. K. Wong, and E. S. T. Lai, 2006: From SWIRLS to RAPIDS: Nowcast Applications Development in Hong Kong. Proceedings of PWS Workshop on Warnings of Real-Time Hazards by Using Nowcasting Technology. Sydney, Australia, 9–13 October, WMO, 1–20.

    Google Scholar 

  • Xiao, Q. N., Y. H. Kuo, J. Z. Sun, et al., 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 14–22, doi: 10.1175/JAM2439.1.

    Article  Google Scholar 

  • Xu, F., X. Y. Mu, W. F. Wang, et al., 2013: The application and discussion of classified optimization method on estimating precipitation in the region around Yangtze River in Jiangsu Province. J. Meteor. Sci., 33, 51–58, doi: 10.3969/2012jms.0064. (in Chinese)

    Google Scholar 

  • Xue, M., 2016: Preface to the special issue on the “Observation, Prediction and Analysis of severe Convection of China” (OPACC) National “973” Project. Adv. Atmos. Sci., 33, 1099–1101, doi: 10.1007/s00376-016-0002-3.

    Article  Google Scholar 

  • Xue, M., and W. J. Martin, 2006: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev., 134, 149–171, doi: 10.1175/MWR3071.1.

    Google Scholar 

  • Xue, M., K. K. Droegemeier, V. Wong, et al., 1995: The Advanced Regional Prediction System (ARPS) User’s Guide. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, 380 pp.

    Google Scholar 

  • Yao, Y. F., M. H. Cheng, H. P. Yang, et al., 2007: Optimized Z-I relationship and its application to the measurement of rainfall in Huaihe basion. Meteor. Mon., 33, 37–43, doi: 10.3969/j.issn.1000-0526.2007.06.006. (in Chinese)

    Google Scholar 

  • Zhang, C. Z., J. S. Xue, L. Zhang, et al., 2012: Study of the “1D + 3D var” assimilation of the rain rate retrieved from radar reflectivity and its experiments. Acta Meteor. Sinica, 70, 1128–1136, doi: 10.11676/qxxb2012.095. (in Chinese)

    Google Scholar 

Download references

Acknowledgments

All the observational data used in this work were provided by the National (Key) Basic Research and Development (973) Program of China (2013CB430102). The NCEP-FNL datasets are available from https://doi.org/rda.ucar.edu/datasets/ds083.2/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimei Shao.

Additional information

Supported by the National (Key) Basic Research and Development (973) Program of China (2013CB430102) and National Natural Science Foundation of China (41275102 and 41330527).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Shao, A., Yue, X. et al. Statistics of the ZR Relationship for Strong Convective Weather over the Yangtze–Huaihe River Basin and Its Application to Radar Reflectivity Data Assimilation for a Heavy Rain Event. J Meteorol Res 32, 598–611 (2018). https://doi.org/10.1007/s13351-018-7163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7163-1

Key words

Navigation