Skip to main content
Log in

Using a Hidden Markov Model to Analyze the Flood-Season Rainfall Pattern and Its Temporal Variation over East China

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The homogeneous hidden Markov model (HMM), a statistical pattern recognition method, is introduced in this paper. Based on the HMM, a 53-yr record of daily precipitation during the flood season (April–September) at 389 stations in East China during 1961–2013 is classified into six patterns: the South China (SC) pattern, the southern Yangtze River (SY) pattern, the Yangtze–Huai River (YH) pattern, the North China (NC) pattern, the overall wetter (OW) pattern, and the overall drier (OD) pattern. Features of the transition probability matrix of the first four patterns reveal that 1) the NC pattern is the most persistent, followed by the YH, and the SY is the least one; and 2) there exists a SY–SC–SY–YH–NC propagation process for the rain belt over East China during the flood season. The intraseasonal variability in the occurrence frequency of each pattern determines its start and end time. Furthermore, analysis of interdecadal variability in the occurrence frequency of each pattern in recent six decades has identified three obvious interdecadal variations for the SC, YH, and NC patterns in the mid–late 1970s, the early 1990s, and the late 1990s. After 2000, the patterns concentrated in the southern region play a dominant role, and thus there maintains a “flooding in the south and drought in the north” rainfall distribution in eastern China. In summary, the HMM provides a unique approach for us to obtain both spatial distribution and temporal variation features of flood-season rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnston A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126, doi: 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    Article  Google Scholar 

  • Chen C., A. M. Greene, A. W. Robertson, et al., 2013: Scenario development for estimating potential climate change impacts on crop production in the North China Plain. Int. J. Climatol., 33, 3124–3140, doi: 10.1002/joc.3648.

    Article  Google Scholar 

  • Chen L. X., W. Li, P. Zhao, et al., 2000: On the process of summer monsoon onset over East Asia. Climatic Environ. Res., 5, 345–355, doi: 10.3969/j.issn.1006-9585.2000.04.002. (in Chinese)

    Google Scholar 

  • Chen Y. S., N. Shi, and H. B. Liu, 1995: A study of the diagnostic and prognostic method for distributive patterns of summer rainfall in eastern China. Quart. J. Appl. Meteor., 6, 327–332. (in Chinese)

    Google Scholar 

  • Dikbas F., M. Firat, A. C. Koc, et al., 2012: Classification of precipitation series using fuzzy cluster method. Int. J. Climatol., 32, 1596–1603, doi: 10.1002/joc.2350.

    Article  Google Scholar 

  • Ding Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373–396, doi: 10.2151/jmsj1965.70.1B_373.

    Article  Google Scholar 

  • Ding Y. H., and M. Katsuhito, 1994: Monsoons in East Asia. China Meteorological Press, Beijing, 74–92.

    Google Scholar 

  • Ding Y. H., and H. N. Ma, 1996: The Present Status and Future Research of the East Asian Monsoon. China Meteorological Press, 1–14.

    Google Scholar 

  • Fasullo J., and P. J. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 3200–3211, doi: 10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2.

    Article  Google Scholar 

  • Gao H., W. Jiang, and W. J. Li, 2014: Changed relationships between the East Asian summer monsoon circulations and the summer rainfall in eastern China. J. Meteor. Res., 28, 1075–1084, doi: 10.1007/s13351-014-4327-5.

    Article  Google Scholar 

  • Golian S., B. Saghafian, S. Sheshangosht, et al., 2010: Comparison of classification and clustering methods in spatial rainfall pattern recognition at Northern Iran. Theor. Appl. Climatol., 102, 319–329, doi: 10.1007/s00704-010-0267-x.

    Article  Google Scholar 

  • Greene A. M., A. W. Robertson, and S. Kirshner, 2008: Analysis of Indian monsoon daily rainfall on subseasonal to multidecadal timescales using a hidden Markov model. Quart. J. Roy. Meteor. Soc., 134, 875–887, doi: 10.1002/qj.254.

    Article  Google Scholar 

  • Greene A. M., A. W. Robertson, P. Smyth, et al., 2011: Downscaling projections of Indian monsoon rainfall using a nonhomogeneous hidden Markov model. Quart. J. Roy. Meteor. Soc., 137, 347–359, doi: 10.1002/qj.788.

    Article  Google Scholar 

  • Guo Q. Y., and J. Q. Wang, 1981: Interannual variations of rain spell during predominant summer monsoon over China for recent 30 years. Acta Geogr. Sinica., 36, 187–195, doi: 10.11821/xb198102007. (in Chinese)

    Google Scholar 

  • He J. H., and B. Q. Liu, 2016: The East Asian subtropical summer monsoon: Recent progress. J. Meteor. Res., 30, 135–155, doi: 10.1007/s13351-016-5222-z.

    Article  Google Scholar 

  • Hughes J. P., and P. Guttorp, 1994: A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resour. Res., 30, 1535–1546, doi: 10.1029/93WR02983.

    Article  Google Scholar 

  • Jiang Z. H., J. H. He, J. P. Li, et al., 2006: Northerly advancement characteristics of the East Asian summer monsoon with its interdecadal variations. Acta Geogr. Sinica., 61, 675–686, doi: 10.3321/j.issn:0375-5444.2006.07.001. (in Chinese)

    Google Scholar 

  • Kim B. J., R. H. Kripalani, J. H. Oh, et al., 2002: Summer mon-soon rainfall patterns over South Korea and associated circulation features. Theor. Appl. Climatol., 72, 65–74, doi: 10.1007/s007040200013.

    Article  Google Scholar 

  • Kirshner S., 2005: Modeling of multivariate time series using hidden Markov models. Ph. D. dissertation, University of California, Long Beach, CA, USA, 202 pp.

    Google Scholar 

  • Kulkarni, A, R. H. Kripalani, and S. V. Singh, 1992: Classification of summer monsoon rainfall patterns over India. Int. J. Climatol., 12, 269–280, doi: 10.1002/joc.3370120304.

    Article  Google Scholar 

  • Kwon M. H., J. G. Jhun, and K. J. Ha, 2007: Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett., 34, L21706, doi: 10.1029/2007GL031977.

    Article  Google Scholar 

  • Lau K. M., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141–162, doi: 10.1007/s00376-997-0016-y.

    Article  Google Scholar 

  • Li A. H., and Z. H. Jiang, 2007: Interannual and interdecadal changes of summer rain band propagation over eastern China. J. Nanjing Inst. Meteor., 30, 186–193, doi: 10.3969/j.issn.1674-7097.2007.02.006. (in Chinese)

    Google Scholar 

  • Li C. Y., 2004: New research progress of the intraseasonal oscillation. Pro. Nat. Sci., 14, 734–741.

    Google Scholar 

  • Liao Q. S., G. Y. Chen, and G. Z. Chen, 1981: Westerlies Circulation in Northern Hemisphere and Summer Precipitation in China. China Meteorological Press, Beijing, 103–114.

    Google Scholar 

  • Lyu J. M., C. W. Zhu, J. H. Ju, et al., 2014: Interdecadal variability in summer precipitation over East China during the past 100 years and its possible causes. Chinese J. Atmos. Sci., 38, 782–794, doi: 10.3878/j.issn.1006-9895.1401.13227. (in Chinese)

    Google Scholar 

  • Mares C., I. Mares, H. Huebener, et al., 2014: A hidden Markov model applied to the daily spring precipitation over the Danube basin. Adv. Meteor., doi: 10.1155/2014/237247.

    Google Scholar 

  • Pineda L. E., and P. Willems, 2016: Multisite downscaling of seasonal predictions to daily rainfall characteristics over Pacific-Andean river basins in Ecuador and Peru using a nonhomogeneous hidden Markov model. J. Hydrometeor., 17, 481–198, doi: 10.1175/JHM-D-15-0040.1.

    Article  Google Scholar 

  • Ramos M. C., 2001: Divisive and hierarchical clustering techniques to analyze variability of rainfall distribution patterns in a Mediterranean region. Atmos. Res., 57, 123–138, doi: 10.1016/S0169-8095(01)00065-5.

    Article  Google Scholar 

  • Ren Y. J., L. C. Song, Z. Y. Wang, et al., 2017: A possible abrupt change in summer precipitation over eastern China around 2009. J. Meteor. Res., 31, 397–408, doi: 10.1007/s13351-016-6021-2.

    Article  Google Scholar 

  • Robertson A. W., S. Kirshner, and P. Smyth, 2004: Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. J. Climate, 17, 4407–4424, doi: 10.1175/JCLI-3216.1.

    Article  Google Scholar 

  • Robertson A. W., S. Kirshner, P. Smyth, et al., 2006: Subseasonalto-interdecadal variability of the Australian monsoon over North Queensland. Quart. J. Roy. Meteor. Soc., 132, 519–542, doi: 10.1256/qj.05.75.

    Article  Google Scholar 

  • Soltani S., and R. Modarres, 2006: Classification of spatiotemporal pattern of rainfall in Iran using a hierarchical and divisive cluster analysis. J. Spat. Hydrol., 6, 1–12.

    Google Scholar 

  • Svensson C., 1999: Empirical orthogonal function analysis of daily rainfall in the upper reaches of the Huai river basin, China. Theor. Appl. Climatol., 62, 147–161, doi: 10.1007/s007040050080.

    Article  Google Scholar 

  • Tan W. L., F. Yusof, and Z. Yusop, 2013: Non-homogeneous hidden Markov model for daily rainfall amount in peninsular Malaysia. Jurnal Teknologi, 63, 75–80, doi: 10.11113/jt.v63.1916.

    Article  Google Scholar 

  • Tao S. Y., Y. J. Zhao, and X. M. Chen, 1958: Meiyu Rainfall in China. Meteorological Proceedings of Central Weather Bureau, Beijing, No. 4, 36 pp.

    Google Scholar 

  • Venkatanagendra K., and D. Maligelaussenaiah, 2017: Classification of rainfall data using linear Kernel based support vector machines. Int. J. Appl. Eng. Res., 12, 9717–9722. Available at www.ripublication.com. Accessed on 20 May 2018.

    Google Scholar 

  • Wan R. J., and G. X. Wu, 2007: Mechanism of the spring persistent rains over southeastern China. Sci. China Ser. D Earth Sci., 50, 130–144, doi: 10.1007/s11430-007-2069-2.

    Article  Google Scholar 

  • Wang B., and H. Lin, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386–398, doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    Article  Google Scholar 

  • Wang S. W., J. L. Ye, D. Y. Gong, et al., 1998: Study on the patterns of summer rainfall in eastern China. Quart. J. Appl. Meteor., 9 (suppl), 65–74. (in Chinese)

    Google Scholar 

  • Wang S. W., J. N. Cai, J. H. Zhu, et al., 2002: The interdecadal variations of annual precipitation in China during the 1880s–1990s. Acta Meteor. Sinica, 60, 637–639, doi: 10.11676/qxxb2002.076. (in Chinese)

    Google Scholar 

  • Woolhiser D. A., and J. Roldán, 1982: Stochastic daily precipitation models: 2. A comparison of distributions of amounts. Water Resour. Res., 18, 1461–1468, doi: 10.1029/WR018i005p01461.

    Article  Google Scholar 

  • Xu L., Z. G. Zhao, Y. G. Wang, et al., 2000: A study of summer rainfall patterns in eastern China. Scientia Meteor. Sinica, 20, 270–276, doi: 10.3969/j.issn.1009-0827.2000.03.005. (in Chinese)

    Google Scholar 

  • Xu L., Z. G. Zhao, L. H. Sun, et al., 2005: Distinguishing wetter/drier rainfall patterns in China and analysis of associated characteristics of general circulation. J. Appl. Meteor. Sci., 16, 77–84, doi: 10.3969/j.issn.1001-7313.2005.z1.010. (in Chinese)

    Google Scholar 

  • Yao X. P., and Y. B. Yu, 2005: Activity of dry cold air and its impacts on Meiyu rain during the 2003 Meiyu period. Chinese J. Atmos. Sci., 29, 973–985, doi: 10.3878/j.issn.1006-9895.2005.06.13. (in Chinese)

    Google Scholar 

  • Yoo J. H., A. W. Robertson, and I. S. Kang, 2010: Analysis of intraseasonal and interannual variability of the Asian summer monsoon using a hidden Markov model. J. Climate, 23, 5498–5516, doi: 10.1175/2010JCLI3473.1.

    Article  Google Scholar 

  • Yu Y. X., S. G. Wang, Z. A. Qian, et al., 2013: Climatic linkages between SHWP position and EASM rainy belts and areas in East China in the summer half year. Plateau Meteor., 32, 1510–1525, doi: 10.7522/j.issn.1000-0534.2013.00033. (in Chinese)

    Google Scholar 

  • Zhang Q. Y., J. M. Lyu, L. M. Yang, et al., 2007: The interdecadal variation of precipitation pattern over China during summer and its relationship with the atmospheric internal dynamic processes and extra-forcing factors. Chinese J. Atmos. Sci., 31, 1290–1300, doi: 10.3878/j.issn.1006-9895.2007.06.23. (in Chinese)

    Google Scholar 

  • Zhang R., Z. J. Dong, J. Z. Min, et al., 2006: A mechanism analyses of East Asia monsoon and its rainfall influencing West Pacific subtropical high activity. J. Basic Sci. Eng., 14, 332–336. (in Chinese)

    Google Scholar 

  • Zhu C. W., X. J. Zhou, P. Zhao, et al., 2011: Onset of East Asian subtropical summer monsoon and rainy season in China. Sci. China Earth Sci., 54, 1845–1853, doi: 10.1007/s11430-011-4284-0.

    Article  Google Scholar 

  • Zhu Y. M., and X. Q. Yang, 2003: Relationships between Pacific decadal oscillation (PDO) and climate variabilities in China. Acta Meteor. Sinica, 61, 641–654, doi: 10.3321/j.issn:0577-6619.2003.06.001. (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We greatly thank the editor and anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Jiang.

Additional information

Supported by the National Natural Science Foundation of China (41675081) and National Key Research and Development Program of China (2017YFA0603804).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Jiang, Z. & Chen, W. Using a Hidden Markov Model to Analyze the Flood-Season Rainfall Pattern and Its Temporal Variation over East China. J Meteorol Res 32, 410–420 (2018). https://doi.org/10.1007/s13351-018-7107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7107-9

Key words

Navigation