Skip to main content
Log in

Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge Network over the Tibetan Plateau

  • Special Collection on Weather and Climate Under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement (GPM) Integrated MultisatellitE Retrievals for GPM (IMERG) and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), are statistically evaluated over the Tibetan Plateau (TP), with an emphasis on the diurnal variation. The results indicate that: (1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m; (2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and (3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion, GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andermann, C., L. Longuevergne, S. Bonnet, et al., 2012: Impact of transient groundwater storage on the discharge of Himalayan rivers. Nature Geosci., 5, 127–132, doi: 10.1038/ngeo1356.

    Article  Google Scholar 

  • Bai, A. J., C. H. Liu, and X. D. Liu, 2008: Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis. Chinese J. Geophys., 51, 518–528, doi: 10.1002/cjg2.1242.

    Article  Google Scholar 

  • Chen, F. R., and X. Li, 2016: Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sens., 8, 472, doi: 10.3390/rs8060472.

    Article  Google Scholar 

  • Cimini, D., F. Romano, E. Ricciardelli, et al., 2013: Validation of satellite OPEMW precipitation product with ground-based weather radar and rain gauge networks. Atmos. Meas. Tech., 6, 3181–3196, doi: 10.5194/amt-6-3181-2013.

    Article  Google Scholar 

  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and modelsimulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 6377–6402, doi: 10.1029/98JD02720.

    Article  Google Scholar 

  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47–64, doi: 10.1175/BAMS-88-1-47.

    Article  Google Scholar 

  • Fujinami, H., S. Nomura, and T. Yasunari, 2005: Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer. Sola, 1, 49–52, doi: 10.2151/sola.2005-014.

    Article  Google Scholar 

  • Gao, Y. C., and M. F. Liu, 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837–849, doi: 10.5194/hess-17-837-2013.

    Article  Google Scholar 

  • Guo, J. P., P. M. Zhai, L. Wu, et al., 2014: Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet. Int. J. Climatol., 34, 2940–2956, doi: 10.1002/joc.3886.

    Google Scholar 

  • Guo, H., S. Chen, A. M. Bao, et al., 2016: Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China. Atmos. Res., 176–177, 121–133, doi: 10.1016/j.atmosres.2016.02.020.

    Article  Google Scholar 

  • Hong, Y., K. L. Hsu, S. Sorooshian, et al., 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 1834–1853, doi: 10.1175/JAM2173.1.

    Article  Google Scholar 

  • Hou, A. Y., R. K. Kakar, S. P. Neeck, et al., 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701–722, doi: 10.1175/BAMS-D-13-00164.1.

    Article  Google Scholar 

  • Hsu, K. L., X. G. Gao, S. Sorooshian, et al., 1997: Precipitation estimation from remotely sensed information using artifical neural networks. J. Appl. Meteor., 36, 1176–1190, doi: 10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    Article  Google Scholar 

  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, et al., 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Guasiglobal, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol., 8, 38–55, doi: 10.1175/JHM560.1.

    Article  Google Scholar 

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, et al., 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol., 5, 487–503, doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    Article  Google Scholar 

  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 1109–1116, doi: 10.5194/hess-15-1109-2011.

    Article  Google Scholar 

  • Kidd, C., P. Bauer, J. Turk, et al., 2012: Intercomparison of highresolution precipitation products over northwest Europe. J. Hydrometeorol., 13, 67–83, doi: 10.1175/JHM-D-11-042.1.

    Article  Google Scholar 

  • Kirstetter, P. E., Y. Hong, J. J. Gourley, et al., 2013: Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar-based national mosaic QPE. J. Hydrometeorol., 14, 661–669, doi: 10.1175/JHM-D-12-030.1.

    Article  Google Scholar 

  • Liu, L. P., J. M. Feng, R. Z. Chu, et al., 2002: The diurnal variation of precipitation in monsoon season in the Tibetan Plateau. Adv. Atmos. Sci., 19, 365–378, doi: 10.1007/s00376-002-0028-6.

    Article  Google Scholar 

  • Liu, Z., 2016: Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeorol., 17, 777–790, doi: 10.1175/JHM-D-15-0068.1.

    Article  Google Scholar 

  • Ma, Y. Z., G. Q. Tang, D. Long, et al., 2016: Similarity and error intercomparison of the GPM and its predecessor-TRMM Multisatellite Precipitation Analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens., 8, 569, doi: 10.3390/rs8070569.

    Article  Google Scholar 

  • Oliveira, R., V. Maggioni, D. Vila, et al., 2016: Characteristics and diurnal cycle of GPM rainfall estimates over the central Amazon region. Remote Sens., 8, 544, doi: 10.3390/rs8070544.

    Article  Google Scholar 

  • Prakash, S., A. K. Mitra, A. AghaKouchak, et al., 2016: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol., 556, 865–876, doi: 10.1016/j.jhydrol.2016.01.029.

    Article  Google Scholar 

  • Prat, O. P., and B. R. Nelson, 2013: Precipitation contribution of tropical cyclones in the southeastern United States from 1998 to 2009 using TRMM satellite data. J. Climate, 26, 1047–1062, doi: 10.1175/JCLI-D-11-00736.1.

    Article  Google Scholar 

  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeorol., 10, 149–166, doi: 10.1175/2008JHM1052.1.

    Article  Google Scholar 

  • Shen, Y., A. Y. Xiong, Y. Wang, et al., 2010: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, doi: 10.1029/2009JD012097.

    Article  Google Scholar 

  • Shen, Y., P. Zhao, Y. Pan, et al., 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res., 119, 3063–3075, doi: 10.1002/2013JD020686.

    Google Scholar 

  • Shige, S., S. Kida, H. Ashiwake, et al., 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242–254, doi: 10.1175/JAMC-D-12-074.1.

    Article  Google Scholar 

  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295, doi: 10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    Article  Google Scholar 

  • Singh, P., and K. Nakamura, 2009: Diurnal variation in summer precipitation over the central Tibetan Plateau. J. Geophys. Res., 114, D20107, doi: 10.1029/2009JD011788.

    Article  Google Scholar 

  • Sorooshian, S., K. L. Hsu, X. G. Gao, et al., 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 2035–2046, doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    Article  Google Scholar 

  • Tang, G. Q., Y. Z. Ma, D. Long, et al., 2016: Evaluation of GPM Day-1 IMERG and TMPA version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol., 533, 152–167, doi: 10.1016/j.jhydrol.2015.12.008.

    Article  Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192, doi: 10.1029/2000JD900719.

    Article  Google Scholar 

  • Tong, K., F. G. Su, D. Q. Yang, et al., 2014: Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol., 519, 423–437, doi: 10.1016/j.jhydrol.2014.07.044.

    Article  Google Scholar 

  • Wen, Y. X., A. Behrangi, B. Lambrigtsen, et al., 2016: Evaluation and uncertainty estimation of the latest radar and satellite snowfall products using SNOTEL measurements over mountainous regions in western United States. Remote Sens., 8, 904, doi: 10.3390/rs8110904.

    Article  Google Scholar 

  • Wolff, D. B., and B. Fisher, 2009: Assessing the relative performance of microwave-based satellite rain-rate retrievals using TRMM ground validation data. J. Appl. Meteor. Climatol., 48, 1069–1099, doi: 10.1175/2008JAMC2127.1.

    Article  Google Scholar 

  • Xu, R., F. Q. Tian, L. Yang, et al., 2017: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res., 122, 910–924, doi: 10.1002/2016JD025418.

    Google Scholar 

  • Yong, B., Y. Hong, L. L. Ren, et al., 2012: Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res., 117, D09108, doi: 10.1029/2011JD017069.

    Article  Google Scholar 

Download references

Acknowledgments

The IMERG Final Run data were provided by the NASA/Goddard Space Flight Center’s Mesoscale Atmospheric Processes Laboratory and PPS, which develop and compute the IMERG as a contribution to GPM, and are archived at the NASA GES DISC (https://pmm.nasa.gov/data-access/downloads/gpm). The TRMM 3B42V7 and 3B43 data were provided by the NASA/Goddard Space Flight and obtained freely online at https://pmm.nasa.gov/data-access/downloads/trmm. We acknowledge the editor and anonymous reviewers for their insightful and constructive comments, which helped improve the original manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengkun Qin.

Additional information

Supported by the National Natural Science Foundation of China (91437221 and 41775097), Science and Technology Planning Project of Guangdong Province (2017B020218003), and Natural Science Foundation of Guangdong Province (2016A030313140).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, D., Qin, Z. et al. Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge Network over the Tibetan Plateau. J Meteorol Res 32, 324–336 (2018). https://doi.org/10.1007/s13351-018-7067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7067-0

Key words

Navigation