Skip to main content
Log in

Evaluation of weather research and forecasting model parameterizations under sea-breeze conditions in a North Sea coastal environment

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Three atmospheric boundary layer (ABL) schemes and two land surface models that are used in the Weather Research and Forecasting (WRF) model, version 3.4.1, were evaluated with numerical simulations by using data from the north coast of France (Dunkerque). The ABL schemes YSU (Yonsei University), ACM2 (Asymmetric Convective Model version 2), and MYJ (Mellor–Yamada–Janjic) were combined with two land surface models, Noah and RUC (Rapid Update Cycle), in order to determine the performances under sea-breeze conditions. Particular attention is given in the determination of the thermal internal boundary layer (TIBL), which is very important in air pollution scenarios. The other physics parameterizations used in the model were consistent for all simulations. The predictions of the sea-breeze dynamics output from the WRF model were compared with observations taken from sonic detection and ranging, light detection and ranging systems and a meteorological surface station to verify that the model had reasonable accuracy in predicting the behavior of local circulations. The temporal comparisons of the vertical and horizontal wind speeds and wind directions predicted by the WRF model showed that all runs detected the passage of the sea-breeze front. However, except for the combination of MYJ and Noah, all runs had a time delay compared with the frontal passage measured by the instruments. The proposed study shows that the synoptic wind attenuated the intensity and penetration of the sea breeze. This provided changes in the vertical mixing in a short period of time and on soil temperature that could not be detected by the WRF model simulations with the computational grid used. Additionally, among the tested schemes, the combination of the localclosure MYJ scheme with the land surface Noah scheme was able to produce the most accurate ABL height compared with observations, and it was also able to capture the TIBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116–125.

    Article  Google Scholar 

  • Azorin-Molina, C., and D. Chen, 2008: A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theor. Appl. Climatol., 96, 249–260.

    Article  Google Scholar 

  • Borge, R., V. Alexandrov, J. J. del Vas, et al., 2008: A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos. Environ., 42, 8560–8574.

    Article  Google Scholar 

  • Bouchlaghem, K., F. B. Mansour, and S. Elouragini, 2007: Impact of a sea breeze event on air pollution at the eastern Tunisian coast. Atmos. Res., 86, 162–172.

    Article  Google Scholar 

  • Boyouk, N., J. F. Léon, H. Delbarre, et al., 2011: Impact of sea breeze on vertical structure of aerosol optical properties in Dunkerque, France. Atmos. Res., 101, 902–910.

    Article  Google Scholar 

  • Challa, V. S., J. Indracanti, M. K. Rabarison, et al., 2009: A simulation study of mesoscale coastal circulations in Mississippi Gulf coast. Atmos. Res., 91, 9–25.

    Article  Google Scholar 

  • Chen, F., K. Mitchell, J. Schaake, et al., 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 7251–7268.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 Modeling System. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Cheng, F. Y., S. C. Chin, and T. H. Liu, 2012: The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area. Atmos. Environ., 54, 714–727.

    Article  Google Scholar 

  • Clappier, A., A. Martilli, P. Grossi, et al., 2000: Effect of sea breeze on air pollution in the greater Athens area. Part I: Numerical simulations and field observations. J. Appl. Meteor., 39, 546–562.

    Article  Google Scholar 

  • Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 1–29.

    Article  Google Scholar 

  • Dai, A. G., and C. Deser, 1999: Diurnal and semidiurnal variations in global surface wind and divergence fields. J. Geophys. Res., 104, 31109–31126.

    Article  Google Scholar 

  • Delbarre, H., P. Augustin, F. Saïd, et al., 2005: Groundbased remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE. Atmos. Res., 74, 403–433.

    Article  Google Scholar 

  • De Léon, S. P., and A. Orfila, 2013: Numerical study of the marine breeze around Mallorca Island. Appl. Ocean Res., 40, 26–34.

    Article  Google Scholar 

  • Estoque, M. A., 1962: The sea breeze as a function of the prevailing synoptic situation. J. Atmos. Sci., 19, 244–250.

    Article  Google Scholar 

  • Finkele, K., 1998: Inland and offshore propagation speeds of a sea breeze from simulations and measurements. Bound.-Layer Meteor., 87, 307–329.

    Article  Google Scholar 

  • Garcia-Diéz, M., J. Fernández, L. Fita, et al., 2013: Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139, 501–514.

    Article  Google Scholar 

  • Garratt, J. R., and W. L. Physick, 1985: The inland boundary layer at low latitudes: II. Sea-breeze influences. Bound. -Layer Meteor., 33, 209–231.

    Article  Google Scholar 

  • Gilliam, R. C., S. Raman, and D. D. S. Niyogi, 2004: Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Bound.-Layer Meteor., 111, 275–300.

    Article  Google Scholar 

  • Han, Z. W., H. Ueda, and J. L. An, 2008: Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models. Atmos. Environ., 42, 233–249.

    Article  Google Scholar 

  • Hanna, S. R., 1989: Confidence limits for air quality model evaluations, as estimated by bootstrap and Jackknife resampling methods. Atmos. Environ., 23, 1385–1398.

    Article  Google Scholar 

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • Hu, X. M., J. W. Nielsen-Gammon, and F. Q. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 1831–1844.

    Article  Google Scholar 

  • Hu, X. M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res., 118, 10490–10505.

    Google Scholar 

  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 1429–1443.

    Article  Google Scholar 

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.

    Article  Google Scholar 

  • Kitada, T., 1987: Turbulence structure of sea breeze front and its implication in air pollution transport— Application of k-e turbulence model. Bound.-Layer Meteor., 41, 217–239.

    Article  Google Scholar 

  • Koren, V., J. Schaake, K. Mitchell, et al., 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19569–19585.

    Article  Google Scholar 

  • Lee, S.-M., and H. J. S. Fernando, 2004: Evaluation of meteorological models MM5 and HOTMAC using PAFEX-I data. J. Appl. Meteor., 43, 1133–1148.

    Article  Google Scholar 

  • Li, X. L., and Z. X. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 4819–4838.

    Article  Google Scholar 

  • Ma, M. J., Z. X. Pu, S. G. Wang, et al., 2011: Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in Northwest China. Bound.-Layer Meteor., 140, 163–176.

    Article  Google Scholar 

  • Melas, D., I. Ziomas, O. Klemm, et al., 1998: Anatomy of the sea breeze circulation in Athens area under weak large-scale ambient winds. Atmos. Environ., 32, 2223–2237.

    Article  Google Scholar 

  • Melfi, S. H., J. D. Spinhirne, S. H. Chou, et al., 1985: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Appl. Meteor., 24, 806–821.

    Article  Google Scholar 

  • Menut, L., C. Flamant, J. Pelon, et al., 1999: Urban boundary-layer height determination from lidar measurements over the Paris area. Appl. Opt., 38, 945–954.

    Article  Google Scholar 

  • Miao, J. F., L. J. M. Kroon, J. V. G. de Arellano, et al., 2003: Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteor. Atmos. Phys., 84, 157–170.

    Article  Google Scholar 

  • Miller, S. T. K., B. D. Keim, R. W. Talbot, et al., 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011.

    Article  Google Scholar 

  • Muppa, S. K., V. K. Anandan, K. A. Kesarkar, et al., 2012: Study on deep inland penetration of sea breeze over complex terrain in the tropics. Atmos. Res., 104–105, 209–216.

    Article  Google Scholar 

  • Ogawa, S., W. M. Sha, T. Iwasaki, et al., 2003: A numerical study on the interaction of a sea-breeze front with convective cells in the daytime boundary layer. J. Meteor. Soc. Japan, 81, 635–651.

    Article  Google Scholar 

  • Osuri, K. K., U. C. Mohanty, A. Routray, et al., 2012: Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Natural Hazards, 63, 1337–1359.

    Article  Google Scholar 

  • Papanastasiou, D. K., D. Melas, and I. Lissaridis, 2010: Study of wind field under sea breeze conditions: An application of WRF model. Atmos. Res., 98, 102–117.

    Article  Google Scholar 

  • Physick, W. L., D. J. Abbs, and R. A. Pielke, 1989: Formulation of the thermal internal boundary layer in a mesoscale model. Bound.-Layer Meteor., 49, 99–111.

    Article  Google Scholar 

  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over South Florida. Mon. Wea. Rev., 102, 115–139.

    Article  Google Scholar 

  • Pleim, J. E., 2007a: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 1383–1395.

    Article  Google Scholar 

  • Pleim, J. E., 2007b: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 46, 1396–1409.

    Article  Google Scholar 

  • Porson, A., D. G. Steyn, and G. Schayes, 2007: Formulation of an index for sea breezes in opposing winds. J. Appl. Meteor. Climatol., 46, 1257–1263.

    Article  Google Scholar 

  • Puygrenier, V., F. Lohou, B. Campistron, et al., 2005: Investigation on the fine structure of sea-breeze during ESCOMPTE experiment. Atmos. Res., 74, 329–353.

    Article  Google Scholar 

  • Rimetz-Planchon, J., E. Perdrix, S. Sobanska, et al., 2008: PM10 air quality variations in an urbanized and industrialized harbor. Atmos. Environ., 42, 7274–7283.

    Article  Google Scholar 

  • Seigneur, C., B. Pun, P. Pai, et al., 2000: Guidance for the performance evaluation of three-dimensional air quality modeling systems for particulate matter and visibility. J. Air Waste Manag. Assoc., 50, 588–599.

    Article  Google Scholar 

  • Shin, H. H., and S. Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261–281.

    Article  Google Scholar 

  • Simpson, J. E., D. A. Mansfield, and J. R. Milford, 1977: Inland penetration of sea-breeze fronts. Quart. J. Roy. Meteor. Soc., 103, 47–76.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF Version 2. NCAR Tech. Note NCAR/TN-468 STR, 88 pp.

    Google Scholar 

  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 1870–1884.

    Article  Google Scholar 

  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, et al., 2000: Parameterization of cold-season processes in the MAPS land-surface scheme. J. Geophys. Res., 105, 4077–4086.

    Article  Google Scholar 

  • Srinivas, C. V., R. Venkatesan, and A. B. Singh, 2007: Sensitivity of mesoscale simulations of land-sea breeze to boundary layer turbulence parameterization. Atmos. Environ., 41, 2534–2548.

    Article  Google Scholar 

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer Publishing, 670 pp.

    Book  Google Scholar 

  • Talbot, C., P. Augustin, C. Leroy, et al., 2007: Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Bound.-Layer Meteor., 125, 133–154.

    Article  Google Scholar 

  • Xie, B., J. C. H. Fung, A. Chan, et al., 2012: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res., 117, D12103.

    Google Scholar 

  • Xiu, A. J., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40, 192–209.

    Article  Google Scholar 

  • Yang, X. H., 1991: A study of nonhydrostatic effects in idealized sea breeze systems. Bound.-Layer Meteor., 54, 183–208.

    Article  Google Scholar 

  • Zhang, D. L., and W. Z. Zheng, 2007: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157–169.

    Article  Google Scholar 

  • Zhong, S. Y., and E. S. Takle, 1993: The effects of largescale winds on the sea–land-breeze circulations in an area of complex coastal heating. J. Appl. Meteor., 32, 1181–1195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davidson Martins Moreira.

Additional information

Supported by National Council for Scientific and Technological Development (301591/2009-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, N., Reis, N.C., Santos, J.M. et al. Evaluation of weather research and forecasting model parameterizations under sea-breeze conditions in a North Sea coastal environment. J Meteorol Res 30, 998–1018 (2016). https://doi.org/10.1007/s13351-016-6019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-016-6019-9

Key words

Navigation