Skip to main content
Log in

Salient local binary pattern for ground-based cloud classification

  • Articles
  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

Abstract

Ground-based cloud classification is challenging due to extreme variations in the appearance of clouds under different atmospheric conditions. Texture classification techniques have recently been introduced to deal with this issue. A novel texture descriptor, the salient local binary pattern (SLBP), is proposed for ground-based cloud classification. The SLBP takes advantage of the most frequently occurring patterns (the salient patterns) to capture descriptive information. This feature makes the SLBP robust to noise. Experimental results using ground-based cloud images demonstrate that the proposed method can achieve better results than current state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buch, K. A., C. H. Sun, and L. R. Thorne, 1995: Cloud classification using whole-sky imager data. Proc. 9th Symposium on Meteorological Observations and Instrumentation, Charlotte, North Carolina, 353–358.

    Google Scholar 

  • Calbó, J., and J. Sabburg, 2008: Feature extraction from whole-sky ground-based images for cloud-type recognition. J. Atmos. Oceanic Technol., 25(1), 3–14.

    Article  Google Scholar 

  • Cazorla, A., F. J. Olmo, and L. Alados-Arboledas, 2008: Development of a sky imager for cloud cover assessment. J. Opt. Soc. Amer., 25(1), 29–39.

    Article  Google Scholar 

  • Ebert, E. E., 1992: Pattern recognition analysis of polar clouds during summer and winter. Int. J. Remote Sens., 13(1), 97–109.

    Article  Google Scholar 

  • Heinle, A., A. Macke, and A. Srivastav, 2010: Automatic cloud classification of whole sky images. Atmos. Meas. Tech., 3, 557–567.

    Article  Google Scholar 

  • Huo Juan and Lu Daren, 2002: Preliminary study on cloud-cover using an all-sky digital camera. J. Nanjing Inst. Meteor., 25(2), 242–246. (in Chinese)

    Google Scholar 

  • — and —, 2006: Characteristics and distribution of all sky radiance by libradtran modeling: For cloud determination algorithm in all-sky images. Acta Meteor. Sinica, 64(1), 31–38. (in Chinese)

    Google Scholar 

  • Inoue, T., 1987: A cloud type classification with NOAA 7 split-window measurements. J. Geophys. Res., 92(D4), 3991–4000.

    Article  Google Scholar 

  • Lamei, N., K. D. Hutchison, M. M. Crawford, et al., 1994: Cloud type discrimination via multispectral textural analysis. Optical Engineering, 33(4), 1303–1313.

    Article  Google Scholar 

  • Lee, J., R. C. Weger, S. K. Sengupta, et al., 1990: A neural network approach to cloud classification. IEEE Trans. Geosci. Remote Sens., 28(5), 846–855.

    Article  Google Scholar 

  • Liao, S., M. W. K. Law, and A. C. S. Chung, 2009: Dominant local binary patterns for texture classification. IEEE Trans. IP, 18(5), 1107–1118.

    Article  Google Scholar 

  • Liu, C., and H. Wechsler, 2003: Independent component analysis of Gabor features for face recognition. IEEE Trans. Neural Netw., 14(4), 919–928.

    Article  Google Scholar 

  • Liu Lei, Sun Xuejin, Chen Feng, et al., 2011: Cloud classification based on structure features of infrared images. J. Atmos. Oceanic Technol., 28(3), 410–417.

    Article  Google Scholar 

  • Long, C. N., D. W. Slater, and T. Tooman, 2001: Total Sky Imager Model 880 Status and Testing Results. Atmospheric Radiation Measurement Program Technical Report. DOE/SC-ARM/TR-006, 36 pp. Available via http://www.arm.gov.

    Book  Google Scholar 

  • —, J. M. Sabburg, J. Calbó, et al., 2006: Retrieving cloud characteristics from ground-based daytime color all-sky images. J. Atmos. Oceanic Technol., 23, 633–652.

    Article  Google Scholar 

  • Lowe, D. G., 2004: Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Ojala, T., M. Pietikäinen, and T. Mäenpää, 2002: Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans. PAMI, 24(7), 971–987.

    Article  Google Scholar 

  • Shaw, J. A., B. Thurairajah, E. Edqvist, et al., 2002: Infrared cloud imager deployment at the North Slope of Alaska during early 2002. Proc. 12th ARM Science Team Meeting, April 8–12, 2002, St. Petersburg, Florida Washington, D.C., ARM. Available via http://www.arm.gov/publications/proceedings/conf12/extended-abs/shaw-ja.pdf.

    Google Scholar 

  • —, and —, 2003: Short-term Arctic cloud statistics at NSA from the infrared cloud imager. Proc. 13th ARM Science Team Meeting, March 31–April 4, 2003, Broomfield, Colorado, Available via http://www.arm.gov/publications/proceedings/conf13/extended-abs/shaw-ja.pdf.

    Google Scholar 

  • Shields, J. E., M. E. Karr, T. P. Tooman, et al., 1998: The whole sky imager-A year of progress. Proc. 8th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson, AZ, ARM. Available via http://www-mpl.ucsd.edu/people/jshields/publications/wsi.progress.pdf.

    Google Scholar 

  • Singh, M., and M. Glennen, 2005: Automated groundbased cloud recognition. Pattern Anal. Appl., 8(3), 258–271.

    Article  Google Scholar 

  • Sun Xuejin, Gao Taichang, Huo Dongli, et al., 2008: Whole sky infrared cloud measuring system based on the uncooled infrared focal plane array. Infrared Laser Eng., 37(5), 761–764. (in Chinese)

    Google Scholar 

  • —, Liu Lei, Gao Taichang, et al., 2009a: Classification of whole sky infrared cloud image based on the LBP operator. Trans. Atmos. Sci., 32(4), 490–497. (in Chinese)

    Google Scholar 

  • —, —, —, et al., 2009b: Cloud classification of the whole sky infrared image based on the fuzzy uncertainty texture spectrum. J. Appl. Meteor. Sci., 20(2), 157–163. (in Chinese)

    Google Scholar 

  • Tan, X., and B. Triggs, 2010: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. IP, 19(6), 1635–1650.

    Article  Google Scholar 

  • Thurairajah, B., 2004: Thermal infrared imaging of the atmosphere: The Infrared Cloud Imager. M.S. thesis, Department of Electrical and Computer Engineering, Montana State University, 110 pp. Available via http://etd.lib.montana.edu/etd/2004/thurairajah/ThurairajahB04.pdf.

    Google Scholar 

  • Varma, M., and A. Zisserman, 2004: Unifying statistical texture classification frameworks. Image and Vision Compution, 22(14), 1175–1183.

    Article  Google Scholar 

  • WMO, 1987: International Cloud Atlas. World Meteorological Organization, Vol. II, 155 pp.

    Google Scholar 

  • Yang Jun, Lu Weitao, Ma Ying, et al., 2010: An automatic ground based cloud detection method based on the local threshold interpolation. Acta Meteor. Sinica, 68(6), 1007–1017. (in Chinese)

    Google Scholar 

  • Yool, S. R., M. Brandley, C. Kern, et al., 1992: Remote discrimination of clouds using a neural network. Proc. Neural and Stochastic Methods in Image and Signal Processing, 20 July 1992, San Diego, CA, USA, 1766, 497.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunheng Wang  (王春恒).

Additional information

Supported by the National Natural Science Foundation of China (61172103, 60933010, and 60835001).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Wang, C., Xiao, B. et al. Salient local binary pattern for ground-based cloud classification. Acta Meteorol Sin 27, 211–220 (2013). https://doi.org/10.1007/s13351-013-0206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-013-0206-8

Key words

Navigation