Skip to main content
Log in

The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity

  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

Abstract

Several numerical experiments were performed to investigate the dynamic and thermodynamic effects of sea surface temperature (SST) on tropical cyclone (TC) intensity. The results reveal that the relative SST within a radius of 2–3 times the radius of maximum wind contributes positively and greatly to TC intensity, while the remote SST far away from the TC center could reduce storm intensity. The change of air-sea temperature and moisture differences may be the reason why TC intensity is more sensitive to the relative rather than the absolute SST. As the inflow air moves toward the eyewall, warmer (colder) remote SST can gradually increase (decrease) the underlying surface air temperature and moisture, and thus decrease (increase) the air-sea temperature and moisture differences, which lead to less (more) energy fluxes entering the eyewall and then decrease (increase) the TC intensity and make it less sensitive to the absolute SST change. Finally, with all the related dynamic and thermodynamic processes being taken into account, a schematic diagram for the effects of relative SST and absolute SST on TC intensity is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65(3–4), 233–240.

    Article  Google Scholar 

  • Black, P. G., and G. J. Holland, 1995: The boundary layer of Tropical Cyclone Kerry (1979). Mon. Wea. Rev., 123(7), 2007–2028.

    Article  Google Scholar 

  • Chan, J. C. L., Y. Duan, and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. J. Atmos. Sci., 58(2), 154–172.

    Article  Google Scholar 

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclone. Part I: Steady state maintenance. J. Atmos. Sci., 43(6), 585–604.

    Article  Google Scholar 

  • —, 1994: Atmospheric Convection. Oxford University Press, New York, 580 pp.

    Google Scholar 

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54(21), 2519–2541.

    Article  Google Scholar 

  • Jiang Xiaoping, Zhong Zhong, Zhao Sinan, et al., 2008: The variation features of SST induced by tropical cyclones over the South China Sea. Scientia Meteor. Sinica, 28(6), 614–618. (in Chinese)

    Google Scholar 

  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2(3), 218–224.

    Article  Google Scholar 

  • Lin, I. -I., C. -H. Chen, I. -F. Pun, et al., 2009: Warm ocean anomaly, air-sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, doi: 10.1029/2008GL035815.

    Article  Google Scholar 

  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricane. Tellus, 12(1), 1–20.

    Article  Google Scholar 

  • Miyamoto, Y., and T. Takemi, 2010: An effective radius of the sea surface enthalpy flux for the maintenance of a tropical cyclone. Atmos. Sci. Lett., 11(4), 278–282, doi: 10.1002/asl.292.

    Article  Google Scholar 

  • Ramsay, H. A., and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a singlecolumn model. J. Climate, 24(1), 183–193, doi: 10.1175/2010JCLI3690.1.

    Article  Google Scholar 

  • Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44(3), 542–561.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF Version 3. NCAR/TN-475+STR, 113 pp.

  • Sun Yuan, Zhong Zhong, and Wang Yuan, 2012: Characteristics of asymmetric flow of Tropical Cyclone Shanshan (2006) during its turning and intensification period. Acta Meteor. Sinica, 26(2), 147–162, doi: 10.1007/s13351-012-0202-4.

    Article  Google Scholar 

  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 1066–1070, doi: 10.1038/nature06423.

    Article  Google Scholar 

  • —, K. L. Swanson, and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687–689, doi: 10.1126/science.1164396.

    Article  Google Scholar 

  • Wada, A., 2009: Idealized numerical experiments associated with the intensity and rapid intensification of stationary tropical-cyclone-like vortex and its relation to initial sea surface temperature and vortexinduced sea surface cooling. J. Geophys. Res., 114, D18111, doi: 10.1029/2009JD011993.

    Article  Google Scholar 

  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66(5), 1250–1273.

    Article  Google Scholar 

  • —, and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67(1), 97–116.

    Article  Google Scholar 

  • Wu Disheng, Wei Jiansu, Li Yunfang, et al., 2009: A research on air-sea interface heat exchange under the tropical cyclone. Scientia Meteor. Sinica, 29(6), 781–786. (in Chinese)

    Google Scholar 

  • Xu, J., and Y. Wang, 2010a: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67(6), 1831–1852, doi: 10.1175/2010JAS3387.1.

    Article  Google Scholar 

  • —, and —, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138 (11), 4135–4157, doi: 10.1175/2010MWR3335.1.

    Article  Google Scholar 

  • Zhong, Z., and J. S. Zhang, 2006: Explicit simulation on the track and intensity of Tropical Cyclone Winnie (1997). J. Hydrodynamics, 18(6), 736–741.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhong  (钟 中).

Additional information

Supported by the National Natural Science Foundation of China (41175090 and 40830958) and National High Technology Research and Development (863) Program of China (2012AA091801).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Zhong, Z., Ha, Y. et al. The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity. Acta Meteorol Sin 27, 40–49 (2013). https://doi.org/10.1007/s13351-013-0105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-013-0105-z

Key words

Navigation