Skip to main content
Log in

ND testing and establishing models of a multi-span masonry arch bridge

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

The Olla bridge, built in the second half of the nineteenth century, is an arch bridge consisting of five brick masonry arches with stone masonry piers. The bridge crosses the Stura river along the State Route SS 21, connecting the French border with the South-West part of the Piedmont region, and still represents a crucial node for the local commercial traffic. The paper summarises selected results of the extensive research programme carried out to assess the structural conditions of the historic bridge, which exhibited local damage of the arches and diffused surface decay. After a discussion on the common issues arising in the structural assessment of historical infrastructures, the Olla bridge is described and full details are given on the different steps of the investigation: (a) historical research, geomatic survey, on-site visual inspection and limited local tests on materials; (b) operational modal testing and analysis; (c) development of a FE model based on architectural research and selected modelling assumptions; (d) choice of the uncertain structural parameters and identification of the optimal parameters based on the experimentally obtained data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The experimental datasets collected and analyzed during the current study are available from the corresponding author on reasonable request. It is further noticed that data requests will be presented to the bridge’s owner for relative approval.

References

  1. Kurrer K-E (2008) The history of the theory of structures: from arch analysis to computational mechanics. Ernst & Sohn, Berlin

    Book  Google Scholar 

  2. Orbán Z, Gutermann M (2009) Assessment of masonry arch railway bridges using non-destructive in-situ testing methods. Eng Struct 31(10):2287–2298. https://doi.org/10.1016/j.engstruct.2009.04.008

    Article  Google Scholar 

  3. Page J (1993) Masonry arch bridges: state of the art review. HMSO, London

    Google Scholar 

  4. Brencich A, Morbiducci R (2007) Masonry arches: historical rules and modern mechanics. Int J Archit Herit 1(2):165–189. https://doi.org/10.1080/15583050701312926

    Article  Google Scholar 

  5. Heyman J (1995) The stone skeleton: structural engineering of masonry architecture. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Poleni G (1748) Memorie istoriche della gran cupola del tempio vaticano e de’ danni di essa, e de’ ristoramenti loro. Stamperia del Seminario, Padua

  7. Méry E (1840) Sur l’equilibre des voutes en berceau. Annales des Ponts et Chaussées 19:50–70

    Google Scholar 

  8. Torre C (2003) Ponti in Muratura: Dizionario Storico-Tecnologico (in Italian). Alinea Editrice, Firenze

    Google Scholar 

  9. Curioni G (1873) L’arte del costruire: costruzioni civili, stradali ed idrauliche (in Italian). Augusto Federico Negro Editore, Turin

    Google Scholar 

  10. Castigliano A (1879) Théorie de l’équilibre des systèmes élastiques et ses applications (in French). Augusto Federico Negro, Turin

    Google Scholar 

  11. Kooharian A (1952) Limit analysis of voussoir (segmental) and concrete arches. Proc Am Concr Inst 49:317–328. https://doi.org/10.14359/11822

    Article  Google Scholar 

  12. Heyman J (1982) The masonry arch. Cambridge University Press, Cambridge

    Google Scholar 

  13. LimitState (2014) RING manual version 3.1.b. LimitState, Sheffield

    Google Scholar 

  14. Fanning PJ, Boothby TE (2001) Three-dimensional modelling and full-scale testing of stone arch bridges. Comput Struct 79(29–30):2645–2662. https://doi.org/10.1016/S0045-7949(01)00109-2

    Article  Google Scholar 

  15. Milani G, Lourenço PB (2012) 3D non-linear behavior of masonry arch bridges. Comput Struct 110–111:133–150. https://doi.org/10.1016/j.compstruc.2012.07.008

    Article  Google Scholar 

  16. Pelà L, Aprile A, Benedetti A (2013) Comparison of seismic assessment procedures for masonry arch bridges. Constr Build Mater 38:381–394. https://doi.org/10.1016/j.conbuildmat.2012.08.046

    Article  Google Scholar 

  17. Zampieri P, Zanini MA, Faleschini F (2016) Derivation of analytical seismic fragility functions for common masonry bridge types: methodology and application to real cases. Eng Fail Anal 68:275–291. https://doi.org/10.1016/j.engfailanal.2016.05.031

    Article  Google Scholar 

  18. Gönen S, Soyöz S (2021) Seismic analysis of a masonry arch bridge using multiple methodologies. Eng Struct 226:111354. https://doi.org/10.1016/j.engstruct.2020.111354

    Article  Google Scholar 

  19. Zampieri P, Tetougueni CD, Pellegrino C (2021) Nonlinear seismic analysis of masonry bridges under multiple geometric and material considerations: application to an existing seven-span arch bridge. Structures 34:78–94. https://doi.org/10.1016/j.istruc.2021.07.009

    Article  Google Scholar 

  20. Thavalingam A, Bicanic N, Robinson JI, Ponniah DA (2001) Computational framework for discontinuous modelling of masonry arch bridges. Comput Struct 79(19):1821–1830. https://doi.org/10.1016/S0045-7949(01)00102-X

    Article  Google Scholar 

  21. Saygılı Ö, Lemos JV (2021) Seismic vulnerability assessment of masonry arch bridges. Structures 33:3311–3323. https://doi.org/10.1016/j.istruc.2021.06.057

    Article  Google Scholar 

  22. Tapkln S, Tercan E, Motsa SM, Drosopoulos G, Stavroulaki M, Maravelakis E, Stavroulakis G (2022) Structural investigation of masonry arch bridges using various nonlinear finite-element models. J Bridge Eng 27(7):04022053. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001870

    Article  Google Scholar 

  23. Sarhosis V, De Santis S, de Felice G (2016) A review of experimental investigations and assessment methods for masonry arch bridges. Struct Infrastruct Eng 12(11):1439–1464. https://doi.org/10.1080/15732479.2015.1136655

    Article  Google Scholar 

  24. ICOMOS/ISCARSAH Committee (2005) Recommendations for the analysis, conservation and structural restoration of architectural heritage

  25. Solla M, Caamaño JC, Riveiro B, Arias P (2012) A novel methodology for the structural assessment of stone arches based on geometric data by integration of photogrammetry and ground-penetrating radar. Eng Struct 35:296–306. https://doi.org/10.1016/j.engstruct.2011.11.004

    Article  Google Scholar 

  26. Domede N, Sellier A, Stablon T (2013) Structural analysis of a multi-span railway masonry bridge combining in situ observations, laboratory tests and damage modelling. Eng Struct 56:837–849. https://doi.org/10.1016/j.engstruct.2013.05.052

    Article  Google Scholar 

  27. Brencich A, Sabia D (2008) Experimental identification of a multi-span masonry bridge: the Tanaro bridge. Constr Build Mater 22(10):2087–2099. https://doi.org/10.1016/j.conbuildmat.2007.07.031

    Article  Google Scholar 

  28. Costa C, Ribeiro D, Jorge P, Silva R, Arêde A, Calçada R (2016) Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Eng Struct 123:354–371. https://doi.org/10.1016/j.engstruct.2016.05.044

    Article  Google Scholar 

  29. Roselli I, Malena M, Mongelli M, Cavalagli N, Gioffrè M, De Canio G, de Felice G (2018) Health assessment and ambient vibration testing of the “Ponte delle Torri” of Spoleto during the 2016–2017 Central Italy seismic sequence. J Civ Struct Health Monit 8(2):199–216. https://doi.org/10.1007/s13349-018-0268-5

    Article  Google Scholar 

  30. Bautista-De Castro Á, Sánchez-Aparicio LJ, Carrasco-García P, Ramos LF, González-Aguilera D (2019) A multidisciplinary approach to calibrating advanced numerical simulations of masonry arch bridges. Mech Syst Signal Process 129:337–365. https://doi.org/10.1016/j.ymssp.2019.04.043

    Article  Google Scholar 

  31. Scozzese F, Ragni L, Tubaldi E, Gara F (2019) Modal properties variation and collapse assessment of masonry arch bridges under scour action. Eng Struct 119:109665. https://doi.org/10.1016/j.engstruct.2019.109665

    Article  Google Scholar 

  32. Mottershead JE, Friswell MI (1993) Model updating in structural dynamics: a survey. J Sound Vib 167(2):347–375. https://doi.org/10.1006/jsvi.1993.1340

    Article  Google Scholar 

  33. Douglas BM, Reid WH (1982) Dynamic tests and system identification of bridges. J Struct Div ASCE 108(10):2295–2312

    Article  Google Scholar 

  34. Borlenghi P, Saisi A, Gentile C (2022) Determining and tuning models of a masonry bridge for structural assessment. In: Lecture notes in civil engineering 200 LNCE, pp 409–417. https://doi.org/10.1007/978-3-030-91877-4_47

  35. Ministero dei lavori pubblici (1889) Relazione sul mantenimento delle Strade Nazionali durante il periodo dal 1° Luglio 1887 al 30 Giugno 1888 (in Italian). Tipografia Eredi Botta, Rome

    Google Scholar 

  36. Taricco S (2001) Il tramvai di Demonte: ricordi di una storia passata (in Italian). Mauro Fantino Editore, Borgo San Dalmazzo

  37. Fassi F, Achille C (2018) Relazione delle attività di rilievo topografico e laser-scanner: Ponte dell’Olla località Gaiola (CN) (in Italian). Technical report, Politecnico di Milano

  38. Cocking S, Acikgoz S, Dejong M (2020) Interpretation of the dynamic response of a masonry arch rail viaduct using finite-element modeling. J Archit Eng 26(1):05019008. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000369

    Article  Google Scholar 

  39. (1879) Giornale del Genio Civile. Tavole (in Italian). Istituto Poligrafico dello Stato, Roma

  40. CNR-DT 213, National Research Council (2015) Istruzioni per la valutazione della sicurezza strutturale di ponti stradali in muratura (in Italian). Rome

  41. Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Proces 13(6):855–878. https://doi.org/10.1006/mssp.1999.1249

    Article  Google Scholar 

  42. Cabboi A, Magalhães F, Gentile C, Cunha A (2017) Automated modal identification and tracking: application to an iron arch bridge. Struct Control Health Monit 24(1):e1854. https://doi.org/10.1002/stc.1854

    Article  Google Scholar 

  43. Allemang RJ, Brown DL (1982) Correlation coefficient for modal vector analysis. In: Proceedings of the 1st international modal analysis conference, Orlando, FL, USA

  44. Foraboschi P (2019) Masonry does not limit itself to only one structural material: Interlocked masonry versus cohesive masonry. J Build Eng 26:100831. https://doi.org/10.1016/j.jobe.2019.100831

    Article  Google Scholar 

  45. Borlenghi P, Saisi A, Gentile C (2020) Preliminary structural assessment of a multi-span masonry arch bridge. In: Arêde A, Costa C (eds) Structural integrity, vol 11. Springer, Cham, pp 456–463. https://doi.org/10.1007/978-3-030-29227-0_48

    Chapter  Google Scholar 

  46. Kennedy J, Eberhart R (1995) Particle Swarm Optimization. In: Proceedings of IEEE international conference on neural networks, Perth, Australia

  47. Papazafeiropoulos G, Muñiz-Calvente M, Martínez-Pañeda E (2017) Abaqus2Matlab: a suitable tool for finite element post-processing. Adv Eng Softw 105:9–16. https://doi.org/10.1016/j.advengsoft.2017.01.006

    Article  Google Scholar 

Download references

Acknowledgements

The support of ANAS (Struttura territoriale Piemonte e Valle d’Aosta) is gratefully acknowledged. Sincere thanks are due to M. Cucchi and M. Iscandri (LPMSC, Politecnico di Milano) who assisted the authors in conducting the field tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Gentile.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borlenghi, P., Saisi, A. & Gentile, C. ND testing and establishing models of a multi-span masonry arch bridge. J Civil Struct Health Monit 13, 1595–1611 (2023). https://doi.org/10.1007/s13349-022-00666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-022-00666-1

Keywords

Navigation