Skip to main content
Log in

Blind source separation-based optimum sensor placement strategy for structures

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

Optimal sensor placement (OSP) plays a key role towards cost-effective structural health monitoring (SHM) of flexible structures like tall buildings. In the context of SHM, vibration measurements collected from a large array of sensors involve significant data storage, signal processing, and labor-intensive deployment of sensors. Moreover, with the increasing cost of vibration sensors, it is not possible to install sensors at all locations of the structure. To circumvent these practical challenges, the OSP provides a powerful mathematical framework to estimate unknown structural information based on optimally instrumented sensors located at fewer locations. The proposed research is focused on determination of optimum sensor positions in the multi-degrees-of-freedom system using blind source separation (BSS) method. The underdetermined signal separation capability of the BSS is explored to conduct the modal identification using fewer sensors and the resulting modal parameters are utilized to set up the optimization criterion for optimal sensor configurations. The methodology is illustrated using simulation models with different mass and stiffness distributions under a wide range of ground motion characteristics. Finally, the vibration measurements of the Canton tower data in China are utilized to demonstrate the performance of the proposed OSP technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Carden EP, Fanning P (2004) Vibration-based condition monitoring: a review. Struct Health Monit 3:355–377

    Article  Google Scholar 

  2. Li B, Der Kiureghian A (2016) Robust optimal sensor placement for operational modal analysis based on maximum expected utility. Mech Syst Signal Process 75:155–175

    Article  Google Scholar 

  3. Alavi AH, Hasni H, Lajnef N, Chatti K, Faridazar F (2016) An intelligent structural damage detection approach based on self-powered wireless sensor data. Autom Constr 62:24–44

    Article  Google Scholar 

  4. Spencer BF, Jo H, Mechitov KA et al (2016) Recent advances in wireless smart sensors for multi-scale monitoring and control of civil infrastructure. J Civ Struct Health Monit 6(1):17–41

    Article  Google Scholar 

  5. Stephan C (2012) Sensor placement for modal identification. Mech Syst Signal Process 27:461–470

    Article  Google Scholar 

  6. Liu C, Fang K, Teng J (2015) Optimum wireless sensor deployment scheme for structural health monitoring: a simulation study. Smart Mater Struct 24(11):115034

    Article  Google Scholar 

  7. Jung BK, Cho JR, Jeong WB (2015) Sensor placement optimization for structural modal identification of flexible structures using genetic algorithm. J Mech Sci Technol 29(7):2775–2783

    Article  Google Scholar 

  8. Papadimitriou C, Beck JL, Au SK (2000) Entropy-based optimal sensor location for structural model updating. J Vib Control 6(5):781–800

    Article  Google Scholar 

  9. Wang J, Law SS, Yang QS (2014) Sensor placement method for dynamic response reconstruction. J Sound Vib 333(9):2469–2482

    Article  Google Scholar 

  10. Guerriero F, Violi A, Nataliziom E, Loscri V, Costanzo C (2011) Modeling and solving optimal sensor placement problems in wireless sensor networks. Appl Math Model 35(1):230–241

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou X, Xia Y, Hao H (2013) Sensor placement for structural damage detection considering measurement uncertainties. Adv Struct Eng 16(5):899–907

    Article  Google Scholar 

  12. Chang M, Pakzad SN (2014) Optimal sensor placement for modal identification of bridge systems considering number of sensing nodes. J Bridge Eng 19(6):04014019

    Article  Google Scholar 

  13. Erdogan YS, Catbas FN, Bakir PG (2014) Structural identification (st-id) using finite element models for optimum sensor configuration and uncertainty quantification. Finite Elem Anal Des 81:1–13

    Article  Google Scholar 

  14. Castro-Triguero R, Murugan S, Gallego R, Friswell MI (2013) Robustness of optimal sensor placement under parametric uncertainty. Mech Syst Signal Process 41(1):268–287

    Article  Google Scholar 

  15. Papadopoulou M, Raphael B, Smith IF, Sekhar C (2015) Optimal sensor placement for time-dependent systems: application to wind studies around buildings. J Comput Civil Eng 30(2):04015024

    Article  Google Scholar 

  16. Zhang CD, Xu YL (2016) Optimal multi-type sensor placement for response and excitation reconstruction. J Sound Vib 360:112–128

    Article  Google Scholar 

  17. Brehm M, Zabel V, Bucher C (2013) Optimal reference sensor positions using output-only vibration test data. Mech Syst Signal Process 41(1):196–225

    Article  Google Scholar 

  18. Rao ARM, Lakshmi K, Krishnakumar S (2014) A generalized optimum sensor placement technique for structural health monitoring and system identification. Procedia Eng 86:529–538

    Article  Google Scholar 

  19. Yi TH, Li HN, Zhang XD (2015) Health monitoring sensor placement optimization for Canton Tower using immune monkey algorithm. Struct Control Health Monit 22(1):123–138

    Article  Google Scholar 

  20. Peng ZR, Yin H, Pan A, Zhao Y (2016) Chaotic monkey algorithm based optimal sensor placement. Int J Control Autom 9(1):423–434

    Article  Google Scholar 

  21. Jia J, Feng S, Liu W (2015) A tri-axial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring. Meas Sci Technol 26(6):065104

    Article  Google Scholar 

  22. Sun M, Ho KC (2014) Optimum sensor placement for fully and partially controllable sensor networks: a unified approach. Signal Process 102:58–63

    Article  Google Scholar 

  23. Danai K, Civjan SA, Styckiewicz MM (2013) Sensor location selection for structures via identifiability analysis in the time-scale domain. J Sound Vib 332(24):6296–6311

    Article  Google Scholar 

  24. Friswell MI, Castro-Triguero R (2015) Clustering of sensor locations using the effective independence method. AIAA J 53(5):1388–1391

    Article  Google Scholar 

  25. Yang C, Lu Z (2017) An interval effective independence method for optimal sensor placement based on non-probabilistic approach. Sci China Technol Sci 60(2):186–198

    Article  MathSciNet  Google Scholar 

  26. Li J, Zhang X, Xing J, Wang P, Yang Q, He C (2015) Optimal sensor placement for long-span cable-stayed bridge using a novel particle swarm optimization algorithm. J Civil Struct Health Monit 5(5):677–685

    Article  Google Scholar 

  27. Kang F, Li J, Xu Q (2008) Virus coevolution partheno-genetic algorithms for optimal sensor placement. Adv Eng Inform 22(3):362–370

    Article  Google Scholar 

  28. Li S, Zhang H, Liu S, Zhang Z (2016) Optimal sensor placement using SRF-based clustering method. J Sound Vib 385:69–80

    Article  Google Scholar 

  29. He L, Lian J, Ma B, Wang H (2014) Optimal multiaxial sensor placement for modal identification of large structures. Struct Control Health Monit 21(1):61–79

    Article  Google Scholar 

  30. Ozer E, Feng MQ (2016) Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification. Smart Mater Struct 25(8):085007

    Article  Google Scholar 

  31. D’Souza K, Epureanu BI (2008) Sensor placement for damage detection in nonlinear systems using system augmentations. AIAA J 46(10):2434–2442

    Article  Google Scholar 

  32. Papadimitriou C (2004) Optimal sensor placement methodology for parametric identification of structural systems. J Sound Vib 278(4):923–947

    Article  MathSciNet  MATH  Google Scholar 

  33. Antoni J, Garibaldi L, Marchesiello S, Sidhamed M (2004) New separation techniques for output-only modal analysis. Shock Vib 11(3–4):227–242

    Article  Google Scholar 

  34. Sadhu A, Goldack A, Narasimhan S (2015) Ambient modal identification using multi-rank parallel factor decomposition. Struct Control Health Monit 22(4):595–614

    Article  Google Scholar 

  35. Sadhu A, Narasimhan S, Antoni J (2017) A review of output-only structural model identification employing blind source separation methods. Mech Syst Signal Process 94:415–431

    Article  Google Scholar 

  36. Ni YQ, Xia Y, Liao WY, Ko JM (2009) Technology innovation in developing the structural health monitoring system for Guangzhou new TV tower. Struct Control Health Monit 16(1):73–98

    Article  Google Scholar 

  37. Sadhu A, Hazra B, Narasimhan S (2013) Decentralized modal identification of structures using parallel factor decomposition and sparse blind source separation. Mech Syst Signal Process 41(1):396–419

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the MITACS through the MITACS’s globalink research internship awarded to the second author of this paper. The authors would like to thank the MITACS for their funding to support the second author of IIT Roorkee (India) during his summer internship at the Lakehead University, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sadhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhu, A., Goli, G. Blind source separation-based optimum sensor placement strategy for structures. J Civil Struct Health Monit 7, 445–458 (2017). https://doi.org/10.1007/s13349-017-0235-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-017-0235-6

Keywords

Navigation