Skip to main content
Log in

Affine semigroups of maximal projective dimension

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

A submonoid of \( {\mathbb {N}}^d \) is of maximal projective dimension (\({\text {MPD}}\)) if the associated affine semigroup ring has the maximum possible projective dimension. Such submonoids have a nontrivial set of pseudo-Frobenius elements. We generalize the notion of symmetric semigroups, pseudo-symmetric semigroups, and row-factorization matrices for pseudo-Frobenius elements of numerical semigroups to the case of \({\text {MPD}}\)-semigroups in \({\mathbb {N}}^d\). Under suitable conditions, we prove that these semigroups satisfy the generalized Wilf’s conjecture. We prove that the generic nature of the defining ideal of the associated semigroup ring of an \({\text {MPD}}\)-semigroup implies uniqueness of row-factorization matrix for each pseudo-Frobenius element. Further, we give a description of pseudo-Frobenius elements and row-factorization matrices of gluing of \({\text {MPD}}\)-semigroups. We prove that the defining ideal of gluing of \({\text {MPD}}\)-semigroups is never generic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Another proof of this theorem can be found in [23, Remark 4.4(3)]. We cite Theorem 3.1 of reference [6] because we have adopted the techniques of this proof in our article.

References

  1. Assi, A., García-Sánchez, P.A., Ojeda, I.: Frobenius vectors, Hilbert series and gluings of affine semigroups. J. Commut. Algebra 7(3), 317–335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhardwaj, O.P., Goel, K., Sengupta, I.: Affine semigroups of maximal projective dimension. Séminaire Lotharingien de Combinatoire 86B(33), 10 (2022).

  3. Bresinsky, H.: On prime ideals with generic zero \(x_{i}=t^{n_{i}}\). Proc. Am. Math. Soc. 47, 329–332 (1975)

    MATH  Google Scholar 

  4. Bresinsky, H., Hoa, L.T.: Minimal generating sets for a family of monomial curves in \({\bf A}^4\). In: Commutative Algebra and Algebraic Geometry (Ferrara), volume 206 of Lecture Notes in Pure and Appl. Math. Dekker, New York, pp. 5–14 (1999)

  5. Cavaliere, M.P., Niesi, G.: On monomial curves and Cohen–Macaulay type. Manuscr. Math. 42(2–3), 147–159 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charalambous, H., Katsabekis, A., Thoma, A.: Minimal systems of binomial generators and the indispensable complex of a toric ideal, pp. 1–10 (2006). arXiv perprint arXiv:math/0607249

  7. Charalambous, H., Katsabekis, A., Thoma, A.: Minimal systems of binomial generators and the indispensable complex of a toric ideal. Proc. Am. Math. Soc. 135(11), 3443–3451 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Díaz-Ramírez, J.D., García-García, J.I., Marín-Aragón, D., Vigneron-Tenorio, A.: Characterizing affine \({\cal{C}}\)-semigroups, pp. 1–15 (2021). arXiv preprint arXiv:1907.03276v2

  9. Eto, K.: Almost Gorenstein monomial curves in affine four space. J. Algebra 488, 362–387 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eto, K.: On row-factorization matrices. J. Algebra Number Theory Adv. Appl. 17(2), 93–108 (2017)

    Article  Google Scholar 

  11. Eto, K.: Generic Toric Ideals and Row-Factorization Matrices in Numerical Semigroups, pp. 83–91. Springer, Cham (2020)

    MATH  Google Scholar 

  12. García-García, J.I., Marín-Aragón, D., Vigneron-Tenorio, A.: An extension of Wilf’s conjecture to affine semigroups. Semigroup Forum 96(2), 396–408 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. García-García, J.I., Ojeda, I., Rosales, J.C., Vigneron-Tenorio, A.: On pseudo-Frobenius elements of submonoids of \(\mathbb{{N}^{d}}\). Collect. Math. 71(1), 189–204 (2020)

  14. Gasharov, V., Peeva, I., Welker, V.: Rationality for generic toric rings. Math. Z. 233(1), 93–102 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gimenez, P., Srinivasan, H.: The structure of the minimal free resolution of semigroup rings obtained by gluing. J. Pure Appl. Algebra 223(4), 1411–1426 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  17. Herzog, J., Watanabe, K.: Almost symmetric numerical semigroups. Semigroup Forum 98(3), 589–630 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jafari, R., Yaghmaei, M.: Type and conductor of simplicial affine semigroups. J. Pure Appl. Algebra 226(3), 106844 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)

    Google Scholar 

  20. Moscariello, A.: On the type of an almost Gorenstein monomial curve. J. Algebra 456, 266–277 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nari, H.: Symmetries on almost symmetric numerical semigroups. Semigroup Forum 86(1), 140–154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Numata, T.: Almost symmetric numerical semigroups generated by four elements. Proc. Inst. Nat. Sci. Nihon Univ. 48, 197–207 (2013)

    MATH  Google Scholar 

  23. Peeva, I., Sturmfels, B.: Generic lattice ideals. J. Am. Math. Soc. 11(2), 363–373 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rosales, J.C.: On presentations of subsemigroups of \({N}^n\). Semigroup Forum 55(2), 152–159 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Developments in Mathematics, vol. 20. Springer, New York (2009)

    Book  Google Scholar 

  26. Sabzrou, H., Rahmati, F.: The Frobenius number and a-invariant. Rocky Mt. J. Math. 36(6), 2021–2026 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saha, J., Sengupta, I., Srivastava, P.: Projective closures of affine monomial curves, pp. 1–23 (2021). arXiv preprint arXiv:2101.12440

  28. The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.11.1 (2021)

Download references

Acknowledgements

Experiments with the computer algebra softwares Macaulay2 [16] and GAP [28] have provided numerous valuable insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranath Sengupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author is supported by the Early Career Fellowship at IIT Gandhinagar. The third author is the corresponding author; supported by the MATRICS research Grant MTR/2018/000420, sponsored by the SERB, Government of India. An extended abstract of the paper is published in the proceedings of The 34th International Conference on Formal Power Series and Algebraic Combinatorics [2] held at Indian Institute of Science, Bangalore (India) during July 18–22, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, O.P., Goel, K. & Sengupta, I. Affine semigroups of maximal projective dimension. Collect. Math. 74, 703–727 (2023). https://doi.org/10.1007/s13348-022-00370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-022-00370-9

Keywords

Mathematics Subject Classification

Navigation