Skip to main content
Log in

Cubic-to-inverted micellar and the cubic-to-hexagonal-to-micellar transitions on phytantriol-based cubosomes induced by solvents

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Cubosomes are nanoparticles composed of a specific combination of some types of amphiphilic molecules like lipids, such as phytantriol (PHY), and a nonionic polymer, like poloxamer (F127). Cubosomes have a high hydrophobic volume (> 50%) and are good candidates for drug delivery systems. Due to their unique structure, these nanoparticles possess the ability to incorporate highly hydrophobic drugs. A challenge for the encapsulation of hydrophobic molecules is the use of organic solvents in the sample preparation process. In this study, we investigated the structural influence of four different solvents (acetone, ethanol, chloroform, and octane), by means of small-angle X-ray scattering and cryogenic electron microscopy techniques. In the presence of a high amount of acetone and ethanol (1:5 solvent:PHY volumetric ratio), for instance, a cubic-to-micellar phase transition was observed due to the high presence of these two solvents. Chloroform and octane have different effects over PHY-based cubosomes as compared to acetone and ethanol, both of them induced a cubic-to-inverse hexagonal phase transition. Those effects are attributed to the insertion of the solvent in the hydrophobic region of the cubosomes, increasing its volume and inducing such transition. Moreover, a second phase transition from reversed hexagonal-to-inverted micellar was observed for chloroform and octane. The data also suggest that after 24 h of solvent/cubosome incubation, some structural features of cubosomes change as compared to the freshly prepared samples. This study could shed light on drug delivery systems using PHY-based cubosomes to choose the appropriate solvent in order to load the drug into the cubosome.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Act:

Acetone

Clf:

Chloroform

Cryo-TEM:

Cryogenic electron microscopy

D H :

Hydrodynamic diameter

DLS:

Dynamic light scattering

EtOH:

Ethanol

F127:

Pluronic F-127

LogP:

Octanol/water partition coefficient

Oct:

Octane

PHY:

Phytantriol

PHY-CUB:

Cubosome-based phytantriol

SAXS:

Small-angle X-ray scattering

Tm:

Melting temperature

References

  1. Barriga HMG, Holme MN, Stevens MM. Cubosomes: the next generation of smart lipid nanoparticles? Angew Chem Int Ed Eng. 2019;58:2958–78.

    CAS  Google Scholar 

  2. Pan X, Han K, Peng X, Yang Z, Qin L, Zhu C, et al. Nanostructed cubosomes as advanced drug delivery system. Curr Pharm Des. 2013;19:6290–7.

    CAS  PubMed  Google Scholar 

  3. Mariani P, Luzzati V, Delacroix H. Cubic phases of lipid-containing systems. Structure analysis and biological implications. J Mol Biol. 1988;204:165–89.

    CAS  PubMed  Google Scholar 

  4. Lakshmi NM, Yalavarthi PR, Vadlamudi HC, Thanniru J, Yaga G, Haritha K. Cubosomes as targeted drug delivery systems—a biopharmaceutical approach. Curr Drug Discov Technol. 2014;11:181–8.

    CAS  PubMed  Google Scholar 

  5. Esposito E, Mariani P, Drechsler M, Cortesi R. Structural studies of lipid-based nanosystems for drug delivery: X-ray diffraction (XRD) and cryogenic transmission electron microscopy (Cryo-TEM). In: Aliofkhazraei M, editor. Handb nanoparticles. Cham: Springer International Publishing; 2016. p. 861–89.

    Google Scholar 

  6. Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21:789–801.

    CAS  PubMed  Google Scholar 

  7. Patrick HN, Warr GG, Manne S, Aksay IA. Self-assembly structures of nonionic surfactants at graphite/solution interfaces. Langmuir. 1997;13:4349–56.

    CAS  Google Scholar 

  8. Mo J, Milleret G, Nagaraj M. Liquid crystal nanoparticles for commercial drug delivery. Liq Cryst Rev. 2017;5:69–85.

    CAS  Google Scholar 

  9. Yepuri NR, Clulow AJ, Prentice RN, Gilbert EP, Hawley A, Rizwan SB, et al. Deuterated phytantriol—a versatile compound for probing material distribution in liquid crystalline lipid phases using neutron scattering. J Colloid Interface Sci. 2019;534:399–407.

    CAS  PubMed  Google Scholar 

  10. Nguyen T-H, Hanley T, Porter CJH, Boyd BJ. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release. 2011;153:180–6.

    CAS  PubMed  Google Scholar 

  11. Akbar S, Anwar A, Ayish A, Elliott JM, Squires AM. Phytantriol based smart nano-carriers for drug delivery applications. Eur J Pharm Sci. 2017;101:31–42.

    CAS  PubMed  Google Scholar 

  12. Akhlaghi SP, Ribeiro IR, Boyd BJ, Loh W. Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic(®) F127 cubosomes. Colls Surf B Biointerf. 2016;145:845–53.

    CAS  Google Scholar 

  13. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of Poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23:2709–28.

    CAS  PubMed  Google Scholar 

  14. Rizwan SB, Dong Y-D, Boyd BJ, Rades T, Hook S. Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron Oxf Engl 1993. 2007;38:478–85.

    CAS  Google Scholar 

  15. Loftsson T. Drug solubilization by complexation. Int J Pharm. 2017;531:276–80.

    CAS  PubMed  Google Scholar 

  16. Rizwan SB, Assmus D, Boehnke A, Hanley T, Boyd BJ, Rades T, et al. Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur J Pharm Biopharm. 2011;79:15–22.

    CAS  PubMed  Google Scholar 

  17. Šoltys M, Kovačík P, Dammer O, Beránek J, Štěpánek F. Effect of solvent selection on drug loading and amorphisation in mesoporous silica particles. Int J Pharm. 2019;555:19–27.

    PubMed  Google Scholar 

  18. Joye IJ, McClements DJ. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci Technol. 2013;34:109–23.

    CAS  Google Scholar 

  19. Qiu L, Zhao X, Zu Y, Zhang Y, Liu Y, Wu W, et al. Ursolic acid nanoparticles for oral delivery prepared by emulsion solvent evaporation method: characterization, in vitro evaluation of radical scavenging activity and bioavailability. Artif Cells Nanomed Biotechnol. Taylor & Francis. 2019;47:609–20.

    CAS  Google Scholar 

  20. Kumar B, Jalodia K, Kumar P, Gautam HK. Recent advances in nanoparticle-mediated drug delivery. J Drug Deliv Sci Technol. 2017;41:260–8.

    CAS  Google Scholar 

  21. Tong S, Hou S, Ren B, Zheng Z, Bao G. Self-assembly of phospholipid–PEG coating on nanoparticles through dual solvent exchange. Nano Lett Am Chem Soc. 2011;11:3720–6.

    CAS  Google Scholar 

  22. Roberts AD, Zhang H. Poorly water-soluble drug nanoparticles via solvent evaporation in water-soluble porous polymers. Int J Pharm. 2013;447:241–50.

    CAS  PubMed  Google Scholar 

  23. Rosenholm JB. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films. Adv Colloid Interf Sci. 2018;253:66–116.

    CAS  Google Scholar 

  24. Kellogg EG, Abraham DJ. Hydrophobicity: is LogP(o/w) more than the sum of its parts? Eur J Med Chem. 2000;35:651–61.

    CAS  Google Scholar 

  25. Lozano P, Diego T, Iborra JL. Effect of water-miscible aprotic solvents on kyotorphin synthesis catalyzed by immobilized α-chymotrypsin. Biotechnol Lett. 1995;17:603–8.

    CAS  Google Scholar 

  26. Rowe ES. Lipid chain length and temperature dependence of ethanol-phosphatidylcholine interactions. Biochemistry. 1983;22:3299–305.

    CAS  Google Scholar 

  27. O’Neil MJ. The Merck index—an encyclopedia of chemicals, drugs, and biologicals. Cambridge: Royal Society of Chemistry; 2013.

    Google Scholar 

  28. Castro RD d, Casadei BR, Santana BV, Lotierzo M, Oliveira NF d, Malheiros B, et al. SCryPTA: a web-based platform for analyzing small-angle scattering curves of lyotropic liquid crystals. bioRxiv. 2019;791848.

  29. Hartnett TE, Ladewig K, O’Connor AJ, Hartley PG, McLean KM. Size and phase control of cubic lyotropic liquid crystal nanoparticles. J Phys Chem B. 2014;118:7430–9.

    CAS  PubMed  Google Scholar 

  30. Dong Y-D, Dong AW, Larson I, Rappolt M, Amenitsch H, Hanley T, et al. Impurities in commercial phytantriol significantly alter its lyotropic liquid-crystalline phase behavior. Langmuir. 2008;24:6998–7003.

    CAS  PubMed  Google Scholar 

  31. Vadysinghe AN, Sivasubramanium M. Anesthetized by chloroform before hanging. Forensic Sci Med Pathol. 2018;14:381–5.

    CAS  PubMed  Google Scholar 

  32. Kimball C, Luo J, Yin S, Hu H, Dhaka A. The pore loop domain of TRPV1 is required for its activation by the volatile anesthetics chloroform and isoflurane. Mol Pharmacol. 2015;88:131–8.

    CAS  PubMed  Google Scholar 

  33. Turkyilmaz S, Almeida PF, Regen SL. Effects of isoflurane, halothane, and chloroform on the interactions and lateral organization of lipids in the liquid-ordered phase. Langmuir. 2011;27:14380–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972;24:583–655.

    CAS  PubMed  Google Scholar 

  35. Yi PN, MacDonald RC. Temperature dependence of optical properties of aqueous dispersions of phosphatidylcholine. Chem Phys Lipids. 1973;11:114–34.

    Google Scholar 

  36. Deshpande S, Caspi Y, Meijering AEC, Dekker C. Octanol-assisted liposome assembly on chip. Nat Commun. 2016;7:1–9.

    CAS  Google Scholar 

  37. Lewis RNAH, Prenner EJ, Kondejewski LH, Flach CR, Mendelsohn R, Hodges RS, et al. Fourier transform infrared spectroscopic studies of the interaction of the antimicrobial peptide gramicidin S with lipid micelles and with lipid monolayer and bilayer membranes. Biochemistry. 1999;38:15193–203.

    CAS  PubMed  Google Scholar 

  38. Mazzoni S, Barbosa LRS, Funari SS, Itri R, Mariani P. Cytochrome-c affects the monoolein polymorphism: consequences for stability and loading efficiency of drug delivery systems. Langmuir. 2016;32:873–81.

    CAS  PubMed  Google Scholar 

  39. White SH. The lipid bilayer as a ‘solvent’ for small hydrophobic molecules. Nature. 1976;262:421–2.

    CAS  PubMed  Google Scholar 

  40. Dyrda G, Boniewska-Bernacka E, Man D, Barchiewicz K, Słota R. The effect of organic solvents on selected microorganisms and model liposome membrane. Mol Biol Rep. 2019;46:3225–32.

    CAS  PubMed  Google Scholar 

  41. Ribeiro IR, Immich MF, Lundberg D, Poletto F, Loh W. Physiological neutral pH drives a gradual lamellar-to-reverse cubic-to-reverse hexagonal phase transition in phytantriol-based nanoparticles. Colloids Surf B: Biointerfaces. 2019;177:204–10.

    CAS  PubMed  Google Scholar 

  42. Ghorbel B, Sellami-Kamoun A, Nasri M. Stability studies of protease from Bacillus cereus BG1. Enzym Microb Technol. 2003;32:513–8.

    CAS  Google Scholar 

Download references

Acknowledgments

A special thanks to the National Laboratory of Synchrotron Light (LNLS), SAXS-1 beamline, and National Laboratory of Nanotechnology (LNNano), Campinas-SP, for the usage of their facilities.

Funding

Financial support for this research was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2015/15822-1), and CNPq (155970/2018-6, 308692/2018-7, 420567/2016-0) are also acknowledged. BRC, BM, and LRSB thank CNPq and ML thanks CAPES for research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro R. S. Barbosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical committee agreement

No animals were used in the present study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotierzo, M.C., Casadei, B.R., de Castro, R.D. et al. Cubic-to-inverted micellar and the cubic-to-hexagonal-to-micellar transitions on phytantriol-based cubosomes induced by solvents. Drug Deliv. and Transl. Res. 10, 1571–1583 (2020). https://doi.org/10.1007/s13346-020-00828-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00828-y

Keywords

Navigation