Skip to main content
Log in

Intranasal administration of budesonide-loaded nanocapsule microagglomerates as an innovative strategy for asthma treatment

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The co-existence with rhinitis limits the control of asthma. Compared with oral H1 receptor antagonists, intranasal corticosteroids have been demonstrated to provide greater relief of all symptoms of rhinitis and are recommended as first-line treatment for allergic rhinitis. Intrinsic limitations of nasal delivery, such as the presence of the protective mucous layer, the relentless mucociliary clearance, and the consequent reduced residence time of the formulation in the nasal cavity, limit budesonide efficacy to the treatment of local nasal symptoms. To overcome these limitations and to enable the treatment of asthma via nasal administration, we developed a budesonide-loaded lipid-core nanocapsule (BudNC) microagglomerate powder by spray-drying using a one-step innovative approach. BudNC was obtained, as a white powder, using L-leucine as adjuvant with 75 ± 6% yield. The powder showed a bimodal size distribution curve by laser diffraction with a principal peak just above 3 μm and a second one around 0.45 μm and a drug content determined by HPLC of 8.7 mg of budesonide per gram. In vivo after nasal administration, BudNC showed an improved efficacy in terms of reduction of immune cell influx; production of eotaxin-1, the main inflammatory chemokine; and arrest of airways remodeling when compared with a commercial budesonide product in both short- and long-term asthma models. In addition, data showed that the results in the long-term asthma model were more compelling than the results obtained in the short-term model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008;454:445–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fixman ED, Stewart A, Martin JG. Basic mechanisms of development of airway structural changes in asthma. Eur Respir J. 2007;29:379–89.

    CAS  PubMed  Google Scholar 

  3. Holgate ST. Pathogenesis of asthma. Clin Exp Allergy. 2008;38:872–97.

    CAS  PubMed  Google Scholar 

  4. Mullol J, Valero A, Alobid I, Bartra J, Navarro AM, Chivato T, et al. Allergic rhinitis and its impact on asthma update (ARIA 2008), the perspective from Spain. J Investig Allergol Clin Immunol. 2008;18(5):327–34.

    CAS  PubMed  Google Scholar 

  5. Lohia S, Schlosser RJ, Soler ZM. Impact of intranasal corticosteroids on asthma outcomes in allergic rhinitis: a meta-analysis. Allergy. 2013;68:569–79.

    CAS  PubMed  Google Scholar 

  6. Weiner JM, Abramson MJ, Puy RM. Intranasal corticosteroids versus oral H1 receptor antagonists in allergic rhinitis: systematic review of randomised controlled trials. BMJ. 1998;317:1624–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar A, Pandey AN, Jain SK. Nasal nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv. 2014;23:671–83.

    Google Scholar 

  8. Pelaia G, Vatrella A, Busceti MT, Fabiano F, Terracciano R, Matera MG, et al. Molecular and cellular mechanisms underlying the therapeutic effects of budesonide in asthma. Pulm Pharmacol Ther. 2016;40:15–21.

    CAS  PubMed  Google Scholar 

  9. Stanaland BE. Once-daily budesonide aqueous nasal spray for allergic rhinitis: a review. Clin Ther. 2004;26(4):473–92.

    CAS  PubMed  Google Scholar 

  10. Tiozzo Fasiolo L, Manniello MD, Tratta E, Buttini F, Rossi A, Sonvico F, et al. Opportunity and challenges of nasal powders: drug formulation and delivery. Eur J Pharm Sci. 2018;113:2–17.

    CAS  PubMed  Google Scholar 

  11. Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Guterres SS, et al. Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics. 2018;10. https://doi.org/10.3390/pharmaceutics10010034.

  12. Fiel LA, Adorne MD, Guterres SS, Netz PA, Pohlmann AR. Variable temperature multiple light scattering analysis to determine the enthalpic term of a reversible agglomeration in submicrometric colloidal formulations: a quick quantitative comparison of the relative physical stability. Colloids Surf A Physicochem Eng Asp. 2013;431:93–104.

    CAS  Google Scholar 

  13. Jager E, Venturini CG, Poletto FS, Colome LM, Pohlmann JP, Bernardi A, et al. Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. J Biomed Nanotechnol. 2009;5:130–40.

    CAS  PubMed  Google Scholar 

  14. Venturini CG, Jager E, Oliveira CP, Bernardi A, Battastini AMO, Guterres SS, et al. Formulation of lipid core nanocapsules. Colloids Surf A Physicochem Eng Asp. 2011;375:200–8.

    CAS  Google Scholar 

  15. Guterres SS, Beck RCR, Pohlmann AR. Spray-drying technique to prepare innovative nanoparticulated formulations for drug administration: a brief overview. Braz J Phys. 2009;39:205–9.

    CAS  Google Scholar 

  16. Deb U, Lomash V, Raghuvanshi S, Pant SC, Vijayaraghavan R. Effects of 28 days silicon dioxide aerosol exposure on respiratory parameters, blood biochemical variables and lung histopathology in rats. Environ Toxicol Pharmacol. 2012;34(3):977–84.

    CAS  PubMed  Google Scholar 

  17. Guterres SS, Pohlmann AR, Beck RCR, Dimer FA, Ortiz M. Processo one-pot de síntese de nanocápsulas poliméricas, suas formas secas, composições farmacêuticas de nanocápsulas poliméricas e seus usos. Patent application INPI BR 102013019136-1 A2; 2013.

  18. Tewa-Tagne P, Briancon S, Fessi H. Preparation of redispersible dry nanocapsules by means of spray-drying: development and characterization. Eur J Pharm Sci. 2007;30:124–35.

    CAS  PubMed  Google Scholar 

  19. El-Gendy N, Gorman EM, Munson EJ, Berkland C. Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci. 2009;98:2731–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Coutinho DS, Anjos-Valotta EA, do Nascimento C, Pires ALA, Napimoga MH, Carvalho VF, et al. 15-Deoxy-Delta-12,14-Prostaglandin J2 Inhibits Lung Inflammation and Remodeling in Distinct Murine Models of Asthma. Front. Immunol. 2017;8:740.

    PubMed  PubMed Central  Google Scholar 

  21. Serra MF, Anjos-Valotta EA, Olsen PC, Couto GC, Jurgilas PB, Cotias AC, et al. Nebulized lidocaine prevents airway inflammation, peribronchial fibrosis, and mucus production in a murine model of asthma. Anesthesiology. 2012;117:580–91.

    CAS  PubMed  Google Scholar 

  22. Subhashini CPS, Kumari S, Kumar JP, Chawla R, Dash D, Singh M, et al. Intranasal curcumin and its evaluation in murine model of asthma. Int Immunopharmacol. 2013;17(3):733–43.

    CAS  PubMed  Google Scholar 

  23. Wu W, Chen H, Li YM, Wang SY, Diao X, Liu KG. Intranasal siRNA targeting c-kit reduces airway inflammation in experimental allergic asthma. Int J Clin Exp Pathol. 2014;7(9):5505–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Beck RCR, Ourique AF, Guterres SS, Pohlmann AR. Spray-dried polymeric nanoparticles for pharmaceutics: a review of patents. Recent Pat Drug Deliv Formul. 2012;6:195–208.

    CAS  PubMed  Google Scholar 

  25. Jornada DS, Fiel LA, Bueno K, Gerent JF, Petzhold CL, Beck RCR, et al. Lipid-core nanocapsules: mechanism of self-assembly, control of size and loading capacity. Soft Matter. 2012;8:6646–55.

    CAS  Google Scholar 

  26. Najafabadi AR, Gilani K, Barghi M, Rafiee-Tehrani M. The effect of vehicle on physical properties and aerosolisation behaviour of disodium cromoglycate microparticles spray dried alone or with L-leucine. Int J Pharm. 2004;285:97–108.

    CAS  PubMed  Google Scholar 

  27. Li FQ, Yan C, Bi J, Lv WL, Ji RR, Chen X, et al. A novel spray-dried nanoparticles-in-microparticles system for formulating scopolamine hydrobromide into orally disintegrating tablets. Int J Nanomedicine. 2011;6:897–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38:728–46.

    CAS  Google Scholar 

  29. Carvalho TC, Peters JI, Williams RO 3rd. Influence of particle size on regional lung deposition-what evidence is there? Int J Pharm. 2011;406:1–10.

    CAS  PubMed  Google Scholar 

  30. Sosnik A. das Neves J, Sarmento, B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog Polym Sci. 2014;39(12):2030–75.

    CAS  Google Scholar 

  31. Gueders, et al. Mouse models of asthma: a comparison between C57BL/6 and BALB/c strains regarding bronchial responsiveness, inflammation, and cytokine production. Inflamm. Res. 2009;58:845–54.

    CAS  PubMed  Google Scholar 

  32. De Sanctis GT, Merchant M, Beier DR, Dredge RD, Grobholz JK, Martin TR, et al. Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nat Genet. 1995;11:150–4.

    PubMed  Google Scholar 

  33. Serra MF, Cotias AC, Pao CRR, Daleprane JB, Jurgilas PB, Couto GC, et al. Repeated allergen exposure in A/J mice causes steroid-insensitive asthma via a defect in glucocorticoid receptor bioavailability. J Immunol. 2018;201:851–60.

    CAS  PubMed  Google Scholar 

  34. Shinagawa K, Kojima M. Mouse model of airway remodeling: strain differences. Am J Respir Crit Care Med. 2003;168:959–67.

    PubMed  Google Scholar 

  35. Matucci A, Maggi E, Vultaggio A. Eosinophils, the IL-5/IL-5Ralpha axis, and the biologic effects of benralizumab in severe asthma. Respir Med. 2019;160:105819.

    PubMed  Google Scholar 

  36. Foster PS, Ming Y, Matthei KI, Young IG, Temelkovski J, Kumar RK. Dissociation of inflammatory and epithelial responses in a murine model of chronic asthma. Lab Investig. 2000;80(5):655–62.

    CAS  PubMed  Google Scholar 

  37. Dent G, Hadjicharalambous C, Yoshikawa T, Handy RL, Powell J, Anderson IK, et al. Contribution of eotaxin-1 to eosinophil chemotactic activity of moderate and severe asthmatic sputum. Am J Respir Crit Care Med. 2004;169(10):1110–7.

    PubMed  Google Scholar 

  38. Nair P, O'Byrne PM. The interleukin-13 paradox in asthma: effective biology, ineffective biologicals. Eur Respir J. 2019;53(2):1802250.

    CAS  PubMed  Google Scholar 

  39. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–98.

    CAS  PubMed  Google Scholar 

  40. Hanania NA, Noonan M, Corren J, Korenblat P, Zheng Y, Fischer SK, et al. Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies. Thorax. 2015;70(8):748–56.

    PubMed  Google Scholar 

  41. Bai TR. Evidence for airway remodeling in chronic asthma. Curr Opin Allergy Clin Immunol. 2010;10:82–6.

    PubMed  Google Scholar 

  42. Holgate ST, Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet. 2006;368:780–93.

    CAS  PubMed  Google Scholar 

  43. Walsh ER, Stokes K, August A. The role of eosinophils in allergic airway inflammation. Discov Med. 2010;9:357–62.

    PubMed  Google Scholar 

  44. Jacobsen EA, Ochkur SI, Pero RS, Taranova AG, Protheroe CA, Colbert DC, et al. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J Exp Med. 2008;205:699–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chaves PS, Frank LA, Frank AG, Pohlmann AR, Guterres SS, Beck RC. Mucoadhesive properties of Eudragit®RS100, Eudragit®S100, and poly(ε-caprolactone) nanocapsules: influence of the vehicle and the mucosal surface. AAPS PharmSciTech. 2018;19(4):1637–46.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study is part of the National Institute of Science and Technology in Pharmaceutical Nanotechnology: a transdisciplinary approach (INCT-NANOFARMA), which is supported by São Paulo Research Foundation (FAPESP, Brazil) Grant no.2014/50928-2, and by the Brazilian National Council for Scientific and Technological Development (CNPq, Brazil) Grant no. 465687/2014-8. The project is also supported by the Research Support Foundation of the State of Rio Grande do Sul (PRONEX FAPERGS/CNPq 12/2014 #16/2551-0000467-6) and Research Support Foundation of the State of Rio de Janeiro (Grant no. E-26/010.000983/2019)(NanoHEALTH). Professors Guterres, S.S., Pohlmann AR, and Martins MA are recipient of Productivity Grants in CNPq.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Aurelio Martins or Sílvia Stanisçuaski Guterres.

Ethics declarations

Conflict of interest

Diego de Sa Coutinho, Bianca Torres Ciambarella, Everton Tenorio de Souza, Ana Paula Leite D’Almeida, Taís Lusa Durli, Patrícia Machado Rodrigues e Silva, Andressa Bernardi, Fabio Sonvico, and Marco Aurelio Martins declare that they have no conflict of interest. Manoel Ortiz, Adriana Raffin Pohlmann, and Silvia Stanisçuaski Guterres have the potential conflict of interest because of a patent application related to the topic of the study (INPI BR 102013019136-1 A2; 2013).

Ethics statement

All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, M., de Sa Coutinho, D., Ciambarella, B.T. et al. Intranasal administration of budesonide-loaded nanocapsule microagglomerates as an innovative strategy for asthma treatment. Drug Deliv. and Transl. Res. 10, 1700–1715 (2020). https://doi.org/10.1007/s13346-020-00813-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00813-5

Keywords

Navigation