Skip to main content
Log in

Zein-based nanoparticles for the oral delivery of insulin

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate oral nanocarriers, prepared from zein nanoparticles coated with a poly(anhydride)-thiamine conjugate (GT), for the delivery of insulin. Nanoparticles displayed a size of 250 nm with a negative surface charge, and an insulin loading of 80 μg/mg. Under simulated gastric conditions, GT-coated nanoparticles released a significantly lower amount of insulin than bare ones; whereas in simulated intestinal conditions, both types of nanoparticles displayed a similar behavior. The effect of insulin on the lipid metabolism of C. elegans under high glucose conditions, characterized by a reduction of the fat content, was also investigated. The effect was significantly higher for the nanoencapsulated forms of insulin than for the free protein (p < 0.001). This effect was two times higher for GT-coated nanoparticles than for bare ones. In rats, the hypoglycemic effect and the pharmacokinetic profile of insulin-loaded nanoparticles orally administered (50 IU/kg) were evaluated. The glycemia of animals slowly decreased reaching a minimum 6–10-h post-administration, with a maximum decrease of about 60%. The pharmacological availability of nanoencapsulated insulin was 13.5%. In serum, nanoparticles provided a maximum of insulin 4-h post-administration, and its relative oral bioavailability was 5.2% (compared with a sc formulation of insulin).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yoon JW, Jun HS. Autoimmune destruction of pancreatic beta cells. Am J Ther. 2005;12:580–91. https://doi.org/10.1097/01.mjt.0000178767.67857.63.

    Article  PubMed  Google Scholar 

  2. Burrack AL, Martinov T, Fife BT. T cell-mediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes, Front Endocrinol (Lausanne). 2017;8:343. https://doi.org/10.3389/fendo.2017.00343.

  3. Thomas CC, Philipson LH. Update on diabetes classification. Med Clin North Am. 2015;99:1–16. https://doi.org/10.1016/j.mcna.2014.08.015.

    Article  PubMed  Google Scholar 

  4. International Diabetes Federation. Diabetes atlas—8th edition, Http://www.diabetesatlas.org/resources/2017-atlas, Accessed Feb 28, 2020.

  5. Akter S, Rahman MM, Abe SK, Sultana P. Prevalence of diabetes and prediabetes and their risk factors among Bangladeshi adults: a nationwide survey. Bull World Health Organ. 2014;92:204–13. https://doi.org/10.2471/BLT.13.128371.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bhutani J, Bhutani S. Worldwide burden of diabetes. Indian J Endocrinol Metab. 2014;18:868–70. https://doi.org/10.4103/2230-8210.141388.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14:88–98. https://doi.org/10.1038/nrendo.2017.151.

    Article  PubMed  Google Scholar 

  8. Chiang JL, Maahs DM, Garvey KC, Hood KK, Laffel LM, Weinzimer SA, et al. Type 1 diabetes in children and adolescents: a position statement by the American Diabetes Association. Diabetes Care. 2018;41:2026–44. https://doi.org/10.2337/dci18-0023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Silver B, Ramaiya K, Andrew SB, Fredrick O, Bajaj S, Kalra S, et al. EADSG Guidelines: insulin therapy in diabetes. Diabetes Ther. 2018;9:449–92. https://doi.org/10.1007/s13300-018-0384-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arbit E, Kidron M. Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol. 2009;3:562–7.

    Article  Google Scholar 

  11. Del Prato S, Leonetti F, Simonson DC, Sheehan P, Matsuda M, DeFronzo RA. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia. 1994;37:1025–35. https://doi.org/10.1007/BF00400466.

    Article  CAS  PubMed  Google Scholar 

  12. Hosseininasab S, Pashaei-Asl R, Khandaghi AA, Nasrabadi HT, Nejati-Koshki K, Akbarzadeh A, et al. Hanifehpour Y, S. Davaran S. Synthesis, characterization, and in vitro studies of PLGA-PEG nanoparticles for oral insulin delivery. Chem Biol Drug Des. 2014;84:307–15. https://doi.org/10.1111/cbdd.12318.

    Article  CAS  PubMed  Google Scholar 

  13. Heinemann L, Jacques Y. Oral insulin and buccal insulin: a critical reappraisal. J Diabetes Sci Technol. 2009;3:568–84.

    Article  Google Scholar 

  14. Plapied L, Duhem N, des Rieux A, Préat V. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci. 2011;16:228–37. https://doi.org/10.1016/j.cocis.2010.12.005.

    Article  CAS  Google Scholar 

  15. Wong CY, Martinez J, Dass CR. Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities. J Pharm Pharmacol. 2016;68:1093–108. https://doi.org/10.1111/jphp.12607.

    Article  CAS  PubMed  Google Scholar 

  16. Chellappan DK, Yenese Y, Wei CC, Chellian J, Gupta G. Oral insulin: current status, challenges, future perspectives. J Environ Pathol Toxicol Oncol. 2017;36:283–91. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2017020182.

    Article  PubMed  Google Scholar 

  17. Tsai LC, Chen CH, Lin CW, Ho YC, Mi FL. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int J Biol Macromol. 2019;126:141–50. https://doi.org/10.1016/j.ijbiomac.2018.12.182.

    Article  CAS  PubMed  Google Scholar 

  18. Deutel B, Greindl M, Thaurer M, Bernkop-Schnürch A. Novel insulin thiomer nanoparticles: in vivo evaluation of an oral drug delivery system. Biomacromolecules. 2008;9:278–85. https://doi.org/10.1021/bm700916h.

    Article  CAS  PubMed  Google Scholar 

  19. Sheng J, Han L, Qin J, Ru G, Li R, Wu L, et al. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl. Mater. Interfaces. 2015;7:15430–41. https://doi.org/10.1021/acsami.5b03555.

    Article  CAS  PubMed  Google Scholar 

  20. Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine. 2007;2:743–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Muntoni E, Marini E, Ahmadi N, Milla P, Ghe C, Bargoni A, et al. Lipid nanoparticles as vehicles for oral delivery of insulin and insulin analogs: preliminary ex vivo and in vivo studies. Acta Diabetol. 2019;56:1283–92. https://doi.org/10.1007/s00592-019-01403-9.

    Article  CAS  PubMed  Google Scholar 

  22. Fonte P, Andrade F, Araújo F. Andrade C, das Neves J, Sarmento B, Chitosan-coated solid lipid nanoparticles for insulin delivery. Methods Enzymol. 2012;508:295–314. https://doi.org/10.1016/B978-0-12-391860-4.00015-X.

    Article  CAS  PubMed  Google Scholar 

  23. Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal. 2015;23:351–8. https://doi.org/10.1016/j.jfda.2015.01.007.

    Article  CAS  PubMed  Google Scholar 

  24. Inchaurraga L, Martínez-López AL, Abdulkarim M, Gumbleton M, Quincoces G, Peñuelas I, et al. Modulation of the fate of zein nanoparticles by their coating with a Gantrez® AN-thiamine polymer conjugate. Int J Pharm X. 2019;1:100006. https://doi.org/10.1016/J.IJPX.2019.100006.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Inchaurraga L, Martínez-López AL, Cattoz B, Griffiths PC, Wilcox M, Pearson JP, et al. The effect of thiamine-coating nanoparticles on their biodistribution and fate following oral administration. Eur J Pharm Sci. 2019;128:81–90. https://doi.org/10.1016/j.ejps.2018.11.025.

    Article  CAS  PubMed  Google Scholar 

  26. Penalva R, Esparza I, Larraneta E, González-Navarro CJ, Gamazo C, Irache JM. Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. J. Agric. Food Chem. 2015;63:5603–11. https://doi.org/10.1021/jf505694e.

    Article  CAS  PubMed  Google Scholar 

  27. Brenner S. The genetics of Caenorabditis elegans. Genetics. 1974;77:71–94. https://doi.org/10.1016/S0047-2484(78)80101-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schlotterer A, Kukudov G, Bozorgmehr F, Hutter H, Du X, Oikonomou D, et al. C. elegans as model for the study of high glucose-mediated life span reduction. Diabetes. 2009;58:2450–6. https://doi.org/10.2337/db09-0567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Navarro-Herrera D, Aranaz P, Eder-Azanza L, Zabala M, Hurtado C, Romo-Hualde A, et al. Dihomo-gamma-linolenic acid induces fat loss in C. Elegans in an omega-3-independent manner by promoting peroxisomal fatty acid β-oxidation. Food Funct. 2018;9:1621–37. https://doi.org/10.1039/c7fo01625e.

    Article  CAS  PubMed  Google Scholar 

  30. Pino EC, Webster CM, Carr CE, Soukas AA. Biochemical and high throughput microscopic assessment of fat mass in Caenorhabditis Elegans. J Vis Exp. 2013;73:50180. https://doi.org/10.3791/50180.

    Article  CAS  Google Scholar 

  31. Martorell P, Llopis S, González N, Montón F, Ortiz P, Genovés S, et al. Caenorhabditis elegans as a model to study the effectiveness and metabolic targets of dietary supplements used for obesity treatment: The specific case of a conjugated linoleic acid mixture (Tonalin). J Agric Food Chem. 2012;60:11071–9. https://doi.org/10.1021/jf3031138.

    Article  CAS  PubMed  Google Scholar 

  32. Thangaraj P. Evaluation of anti-diabetic property on streptozotocin-induced diabetic rats BT - pharmacological assays of plant-based natural products. In: Parimelazhagan T, editor. Cham: Springer International Publishing; 2016. p. 145–9. https://doi.org/10.1007/978-3-319-26811-8_24

  33. Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9:223–43. https://doi.org/10.1016/j.nantod.2014.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64:557–70. https://doi.org/10.1016/J.ADDR.2011.12.009.

    Article  CAS  PubMed  Google Scholar 

  35. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61:158–71. https://doi.org/10.1016/J.ADDR.2008.11.002.

    Article  CAS  PubMed  Google Scholar 

  36. Schneider H, Pelaseyed T, Svensson F, Johansson MEV. Study of mucin turnover in the small intestine by in vivo labeling. Sci Rep. 2018;8:1–11. https://doi.org/10.1038/s41598-018-24148-x.

    Article  CAS  Google Scholar 

  37. Irache JM, Gonzalez-Navarro CJ. Zein nanoparticles as vehicles for oral delivery purposes. Nanomedicine (Lond). 2017;12:1209–11. https://doi.org/10.2217/nnm-2017-0075.

    Article  CAS  PubMed  Google Scholar 

  38. Woitiski CB, Neufeld RJ, Veiga F, Carvalho RA, Figueiredo IV. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur J Pharm Sci. 2010;41:556–63. https://doi.org/10.1016/j.ejps.2010.08.009.

    Article  CAS  PubMed  Google Scholar 

  39. Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release. 2007;117:163–70. https://doi.org/10.1016/J.JCONREL.2006.10.023.

    Article  PubMed  Google Scholar 

  40. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 2007;6:280–93. https://doi.org/10.1016/J.CMET.2007.08.011.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu G, Yin Y, Wang L, Wei W, Jiang L, Qin J. Modeling type 2 diabetes-like hyperglycemia in C. elegans on a microdevice. Integr Biol (UK). 2016;8:30–8. https://doi.org/10.1039/c5ib00243e.

    Article  CAS  Google Scholar 

  42. Lee D, Jeong DE, Son HG, Yamaoka Y, Kim H, Seo K, et al. SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev. 2015;29:2490–503. https://doi.org/10.1101/gad.266304.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alcántar-Fernández J, Navarro RE, Salazar-Martínez AM, Pérez-Andrade ME, Miranda-Ríos J. Caenorhabditis elegans respond to high-glucose diets through a network of stress-responsive transcription factors. PLoS One. 2018;13:e0199888. https://doi.org/10.1371/journal.pone.0199888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mendler M, Schlotterer A, Ibrahim Y, Kukudov G, Fleming T, Bierhaus A, et al. daf-16/FOXO and glod-4/glyoxalase-1 are required for the life-prolonging effect of human insulin under high glucose conditions in Caenorhabditis elegans. Diabetologia. 2014;58:393–401. https://doi.org/10.1007/s00125-014-3415-5.

    Article  CAS  PubMed  Google Scholar 

  45. Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 2001;15:672–86. https://doi.org/10.1101/gad.867301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Everman JL, Ziaie NR, Bechler J, Bermudez LE. Establishing Caenorhabditis elegans as a model for Mycobacterium avium subspecies hominissuis infection and intestinal colonization. Biol Open. 2015;4:1330–5. https://doi.org/10.1242/bio.012260.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Laughlin ST, Bertozzi CR. In vivo imaging of Caenorhabditis elegans glycans. ACS Chem Biol. 2009;4:1068–72. https://doi.org/10.1021/cb900254y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sharma G, van der Walle CF, Ravi Kumar MN. Antacid co-encapsulated polyester nanoparticles for peroral delivery of insulin: development, pharmacokinetics, biodistribution and pharmacodynamics. Int J Pharm. 2013;440:99–110. https://doi.org/10.1016/j.ijpharm.2011.12.038.

    Article  CAS  PubMed  Google Scholar 

  49. Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules. 2009;10:1253–8. https://doi.org/10.1021/bm900035u.

    Article  CAS  PubMed  Google Scholar 

  50. Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Sci. 2011;42:445–51. https://doi.org/10.1016/j.ejps.2010.12.007.

    Article  CAS  PubMed  Google Scholar 

  51. Jin Y, Song Y, Zhu X, Zhou D, Chen C, Zhang Z, et al. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials. 2012;33:1573–82. https://doi.org/10.1016/j.biomaterials.2011.10.075.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] for ALEXANDER under grant agreement no. NMP-2011-1.2-2-280761 and financial support from “Asociación de Amigos” of the University of Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Irache.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inchaurraga, L., Martínez-López, A.L., Martin-Arbella, N. et al. Zein-based nanoparticles for the oral delivery of insulin. Drug Deliv. and Transl. Res. 10, 1601–1611 (2020). https://doi.org/10.1007/s13346-020-00796-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00796-3

Keywords

Navigation