Skip to main content

Advertisement

Log in

3D printing for oral drug delivery: a new tool to customize drug delivery

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The involvement of recent technologies, such as nanotechnology and three-dimensional printing (3DP), in drug delivery has become the utmost importance for effective and safe delivery of potent therapeutics, and thus, recent advancement for oral drug delivery through 3DP technology has been expanded. The use of computer-aided design (CAD) in 3DP technology allows the manufacturing of drug formulation with the desired release rate and pattern. Currently, the most applicable 3DP technologies in the oral drug delivery system are inkjet printing method, fused deposition method, nozzle-based extrusion system, and stereolithographic 3DP. In 2015, the first 3D-printed tablet was approved by the US Food and Drug Administration (FDA), and since then, it has opened up more opportunities in the discovery of formulation for the development of an oral drug delivery system. 3DP allows the production of an oral drug delivery device that enables tailor-made formulation with customizable size, shape, and release rate. Despite the advantages offered by 3DP technology in the drug delivery system, there are challenges in terms of drug stability, safety as well as applicability in the clinical sector. Nonetheless, 3DP has immense potential in the development of drug delivery devices for future personalized medicine. This article will give the recent advancement along with the challenges of 3DP techniques for the development of oral drug delivery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moulton SE, Wallace GG. 3-dimensional (3D) fabricated polymer based drug delivery systems. J Control Release. 2014;193:27–34.

    CAS  PubMed  Google Scholar 

  2. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39:440–51.

    CAS  PubMed  Google Scholar 

  3. Liang K, Carmone S, Brambilla D, Leroux J-C. 3D printing of a wearable personalized oral delivery device: a first-in-human study. Sci Adv. American Association for the Advancement of Science [cited 2019 Jul 12]. 2018;4:eaat2544. https://doi.org/10.1126/sciadv.aat2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bansal M, Sharma V, Singh G, Harikumar SL. 3D printing for the future of pharmaceuticals dosages forms. Int J Appl Pharm. 2018; 1–7.

  5. Katakam P, Dey B, Assaleh FH, Hwisa NT, Adiki SK, Chandu BR, et al. Top-down and bottom-up approaches in 3D printing technologies for drug delivery challenges. Crit Rev Ther Drug Carrier Syst. 2015;32:61–87 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25746205.[cited 2018 Jul 13].

    PubMed  Google Scholar 

  6. Jamróz W, Szafraniec J, Kurek M. Jachowicz R. 3D printing in pharmaceutical and medical applications—recent achievements and challenges. Pharm Res . Springer. 2018;35:176.

    PubMed  PubMed Central  Google Scholar 

  7. Afsana JV, Haider N, Jain K. 3D printing in personalized drug delivery. Curr Pharm Des. 2019;24:5062–71 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30767736. [cited 2019 Jul 15].

    Google Scholar 

  8. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.

    CAS  PubMed  Google Scholar 

  9. Osouli-Bostanabad K, Adibkia K. Made-on-demand, complex and personalized 3D-printed drug products. Bioimpacts. 2018;8:77–9 Tabriz University of Medical Sciences; Available from: http://www.ncbi.nlm.nih.gov/pubmed/29977828. [cited 2019 Jul 15].

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–8.

    CAS  PubMed  Google Scholar 

  11. Yi H-G, Choi Y-J, Kang KS, Hong JM, Pati RG, Park MN, et al. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016;238:231–41 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27288878. [cited 2019 Jul 15].

    CAS  PubMed  Google Scholar 

  12. Pandey M, Choudhury H, Yeun OC, Yin HM, Lynn TW, Tine CLY, et al. Perspectives of nanoemulsion strategies in the improvement of oral, parenteral and transdermal chemotherapy. Curr Pharm Biotechnol. 2018;19:276–92.

    CAS  PubMed  Google Scholar 

  13. Choudhury H, Gorain B, Chatterjee B, Mandal UK, Sengupta P, Tekade RK. Pharmacokinetic and pharmacodynamic features of nanoemulsion following oral, intravenous, topical and nasal route. Curr Pharm Des. 2017;23.

  14. Zeeshan F, Madheswaran T, Pandey M, Gorain B. Three-dimensional (3-D) printing technology exploited for the fabrication of drug delivery systems. Curr Pharm Des. 2018;24:5019–28.

    CAS  PubMed  Google Scholar 

  15. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529:285–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28668582.Accessed 15 July 2019.

  16. Solanki NG, Tahsin M, Shah AV, Serajuddin AT. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release, drug-polymer miscibility and printability. J Pharm Sci. 2018;107:390–401. [cited 2019 Jul 15]. https://doi.org/10.1016/j.xphs.2017.10.021.

    Article  CAS  PubMed  Google Scholar 

  17. First 3D-printed pill. Nat Biotechnol. 2015;33:1014 Available from: http://www.nature.com/articles/nbt1015-1014a. [cited 2019 15].

  18. Ishengoma FR, Mtaho AB. 3D printing: developing countries perspectives. Int J Comput Appl. 2014. Available from: https://pdfs.semanticscholar.org/c251/6eba4c2c1d3254ac33c413d52f7ea79f8be4.pdf

  19. Palo M, Holländer J, Suominen J, Yliruusi J, Sandler N. 3D printed drug delivery devices: perspectives and technical challenges. Expert Rev Med Devices. 2017;14:685–96.

    CAS  PubMed  Google Scholar 

  20. FDA approves the first 3D printed drug product. Aprecia Pharm [Internet]. The Economic Times. 2015. http://www.multivu.com/players/English/7577251-aprecia-pharmaceuticals-spritam/. Accessed 15 July 2019.

  21. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494:657–63.

    CAS  PubMed  Google Scholar 

  22. Prasad LK, Smyth H. 3D printing technologies for drug delivery: a review. Drug Dev Ind Pharm. Taylor & Francis. 2016 [cited 2019 Jan 7];42:1019–31. https://doi.org/10.3109/03639045.2015.1120743.

    Article  CAS  Google Scholar 

  23. Ani Jose P, Christoper PG. 3D printing of pharmaceuticals—a potential technology in developing personalized medicine. Asian J Pharm Res Dev. 2018;6:46–54 Available from: http://ajprd.com. [cited 2019 Jul 15].

    Google Scholar 

  24. Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res. 2017;34:427–37 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27943014. [cited 2019 Jul 15].

    CAS  PubMed  Google Scholar 

  25. Muley S, Nandgude T, Poddar S. Extrusion–spheronization a promising pelletization technique: in-depth review. Asian J Pharm Sci. 2016;11:684–99 Available from: https://www.sciencedirect.com/science/article/pii/S1818087616300721. Elsevier;[cited 2019 Jul 15].

    Google Scholar 

  26. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7 Elsevier; [cited 2019 Jul 15]. Available from: https://www.sciencedirect.com/science/article/pii/S0939641115003306.

    CAS  PubMed  Google Scholar 

  27. Konta A, García-Piña M, Serrano D. Personalised 3D printed medicines: which techniques and polymers are more successful? Bioengineering. 2017;4:79 [cited 2019 Jul 15]Available from: http://www.ncbi.nlm.nih.gov/pubmed/28952558.

    PubMed Central  Google Scholar 

  28. Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156:179–85.

    CAS  PubMed  Google Scholar 

  29. Boehm RD, Miller PR, Daniels J, Stafslien S, Narayan RJ. Inkjet printing for pharmaceutical applications. Mater Today. Elsevier Ltd. 2014;17:247–52.

    CAS  Google Scholar 

  30. Daly R, Harrington TS, Martin GD, Hutchings IM. Inkjet printing for pharmaceutics—a review of research and manufacturing. Int J Pharm. Elsevier B.V. 2015;494:554–67.

    CAS  PubMed  Google Scholar 

  31. Buanz ABM, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011 [cited 2018 Jul 13];28:2386–92. https://doi.org/10.1007/s11095-011-0450-5.

    Article  CAS  PubMed  Google Scholar 

  32. Meléndez PA, Kane KM, Ashvar CS, Albrecht M, Smith PA. Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J Pharm Sci. 2008;97:2619–36.

    PubMed  Google Scholar 

  33. Merits and uses of 3DP in pharmaceutical drug delivery.

  34. Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85:1075–83.

    CAS  PubMed  Google Scholar 

  35. Pardeike J, Strohmeier DM, Schrödl N, Voura C, Gruber M, Khinast JG, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420:93–100.

    CAS  PubMed  Google Scholar 

  36. KM S, Kulsum JU. 3D printing: a new avenue in pharmaceuticals. World J Pharm Res. 2016;5:1686–701.

    Google Scholar 

  37. He Y, Wu Y, Fu JZ, Gao Q, Qiu JJ. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis. 2016;1658–78.

  38. Lewis JA. Direct ink writing of 3D functional materials. Adv Funct Mater. John Wiley & Sons, Ltd. 2006;16:2193–204.

    CAS  Google Scholar 

  39. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–7.

    CAS  PubMed  Google Scholar 

  40. Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496:414–20.

    CAS  PubMed  Google Scholar 

  41. Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm.Elsevier. 2018;545:144–52.

    CAS  PubMed  Google Scholar 

  42. Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499:376–94.

    PubMed  Google Scholar 

  43. Wen H, He B, Wang H, Chen F, Li P, Cui M, et al. Structure-based gastro-retentive and controlled-release drug delivery with novel 3D printing. AAPS PharmSciTech. Springer International Publishing. 2019;20:68.

    PubMed  Google Scholar 

  44. Aprecia Pharmaceuticals. FDA approves the first 3D printed drug product. 2015

  45. Gibson I, Rosen D, Stucker B (Brent). Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing.

  46. BO G, GV S, SB K, DR C, GS A, GP S. 3D Printing in pharmaceutical manufacturing: opportunities and challenges. Int J Bioassays. 2016;5:4723.

    Google Scholar 

  47. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503:207–12.

    CAS  PubMed  Google Scholar 

  48. Alhijjaj M, Belton P, Qi S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur J Pharm Biopharm Elsevier. 2016;108:111–25.

    CAS  Google Scholar 

  49. Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461:105–11 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378517313010144. [cited 2018 Jul 13].

    CAS  PubMed  Google Scholar 

  50. Maroni A, Melocchi A, Parietti F, Foppoli A, Zema L, Gazzaniga A. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J Control Release. 2017;268:10–8.

    CAS  PubMed  Google Scholar 

  51. Genina N, Boetker JP, Colombo S, Harmankaya N, Rantanen J, Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: from drug product design to in vivo testing. J Control Release. 2017;268:40–8.

    CAS  PubMed  Google Scholar 

  52. Kyobula M, Adedeji A, Alexander MR, Saleh E, Wildman R, Ashcroft I, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release. 2017;261:207–15.

    CAS  PubMed  Google Scholar 

  53. Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA. Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J Control Release. 2018;269:355–63.

    CAS  PubMed  Google Scholar 

  54. Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527:161–70.

    CAS  PubMed  Google Scholar 

  55. Pae A, Yoo R-K, Noh K, Paek J, Kwon K-R. The effects of mouthguards on the athletic ability of professional golfers. Dent Traumatol. 2013;29:47–51.

    PubMed  Google Scholar 

  56. Nakajima K, Takeda T, Kawamura S, Shibusawa M, Nara K, Kaoru N, et al. A vacuum technique to increase anterior thickness of athletic mouthguards to achieve a full-balanced occlusion. Dent Traumatol. John Wiley & Sons, Ltd (10.1111). 2008;24:50–2.

    PubMed  Google Scholar 

  57. Yamada A, Niikura F, Ikuta K. A three-dimensional microfabrication system for biodegradable polymers with high resolution and biocompatibility. J Micromechanics Microengineering. IOP Publishing. 2008;18:25035.

    Google Scholar 

  58. Zhang B, Seong B, Nguyen V, Byun D. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J Micromechanics Microengineering. IOP Publishing. 2016;26:25015.

    Google Scholar 

  59. Li Q, Wen H, Jia D, Guan X, Pan H, Yang Y, et al. Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing. Int J Pharm. 2017;525:5–11.

    CAS  PubMed  Google Scholar 

  60. Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW. Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm. 2016;514:290–5.

    CAS  PubMed  Google Scholar 

  61. Goyanes A, Buanz ABM, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0939641114003580. [cited 2018 Jul 13].

    CAS  PubMed  Google Scholar 

  62. Tagami T, Fukushige K, Ogawa E, Hayashi N, Ozeki T. 3D printing factors important for the fabrication of polyvinylalcohol filament-based tablets. Biol Pharm Bull. 2017;40:357–64.

    CAS  PubMed  Google Scholar 

  63. Fu J, Yin H, Yu X, Xie C, Jiang H, Jin Y, et al. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int J Pharm. Elsevier. 2018;549:370–9.

    CAS  Google Scholar 

  64. Linares V, Casas M, Caraballo I. Printfills: 3D printed systems combining fused deposition modeling and injection volume filling. Application to colon-specific drug delivery. Eur J Pharm Biopharm. Elsevier. 2019;134:138–43.

    CAS  PubMed  Google Scholar 

  65. Alhnan MA, Okwuosa TC, Sadia M, Wan K-W, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res Springer US. 2016;33:1817–32.

    CAS  Google Scholar 

  66. Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: a new branch of digital healthcare. Int J Pharm. 2018;548:586–96.

    CAS  PubMed  Google Scholar 

  67. WHO | Global tuberculosis report 2018. WHO World Health Organization; 2019.

  68. Gallo GG, Radaelli P. Rifampin. Anal Profiles Drug Subst. Academic Press. 1976;5:467–513.

    CAS  Google Scholar 

  69. Mariappan TT, Singh S. Regional gastrointestinal permeability of rifampicin and isoniazid (alone and their combination) in the rat. Int J Tuberc Lung Dis. 2003;7:797–803.

    CAS  PubMed  Google Scholar 

  70. Shishoo CJ, Shah SA, Rathod IS, Savale SS, Vora MJ. Impaired bioavailability of rifampicin in presence of isoniazid from fixed dose combination (FDC) formulation. Int J Pharm. 2001;228:53–67.

    CAS  PubMed  Google Scholar 

  71. O’Shaughnessy K. BMA new guide to medicine & drugs. 9th ed. London: Dorling Kindersley; 2015.

    Google Scholar 

  72. Reddymasu SC, Soykan I, McCallum RW. Domperidone: review of pharmacology and clinical applications in gastroenterology. Am J Gastroenterol. 2007;102:2036–45.

    CAS  PubMed  Google Scholar 

  73. Nagarsenker MS, Garad SD, Ramprakash G. Design, optimization and evaluation of domperidone coevaporates. J Control Release. 2000;63:31–9.

    CAS  PubMed  Google Scholar 

  74. Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol. 2015;30:360–7.

    CAS  Google Scholar 

  75. Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, et al. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep. Nature Publishing Group. 2017;7:2829.

    PubMed  PubMed Central  Google Scholar 

  76. Hwang Y-C, Kang M, Ahn CW, Park JS, Baik SH, Chung DJ, et al. Efficacy and safety of glimepiride/metformin sustained release once daily vs. glimepiride/metformin twice daily in patients with type 2 diabetes. Int J Clin Pract. John Wiley & Sons, Ltd (10.1111). 2013;67:236–43.

    PubMed  Google Scholar 

  77. BNF. 74th ed. BMJ Group and the Royal Pharmaceutical Society of Great Britain; 2014.

  78. McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. Springer Berlin Heidelberg 2016;59:426–35.

  79. Ning X, Sun J, Han X, Wu Y, Yan Z, Han J, et al. Strategies to improve dissolution and oral absorption of glimepiride tablets: solid dispersion versus micronization techniques. Drug Dev Ind Pharm. 2011;37:727–36.

    CAS  PubMed  Google Scholar 

  80. Paes AH, Bakker A, Soe-Agnie CJ. Impact of dosage frequency on patient compliance. Diabetes Care American Diabetes Association. 1997;20:1512–7.

    CAS  Google Scholar 

  81. Gioumouxouzis CI, Baklavaridis A, Katsamenis OL, Markopoulou CK, Bouropoulos N, Tzetzis D, et al. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur J Pharm Sci. 2018;120:40–52.

    CAS  PubMed  Google Scholar 

  82. Song R. Mechanism of metformin: a tale of two sites. Diabetes Care. American Diabetes Association; 2016;39:187–189.

  83. Metformin hydrochloride extended-release tablets type of posting notice of intent to revise posting date. 2018.

  84. Trenfield SJ, Goyanes A, Telford R, Wilsdon D, Rowland M, Gaisford S, et al. 3D printed drug products: non-destructive dose verification using a rapid point-and-shoot approach. Int J Pharm. Elsevier. 2018;549:283–92.

    CAS  PubMed  Google Scholar 

  85. Gohel MC, Jogani PD. A review of co-processed directly compressible excipients. J Pharm Pharm Sci. 2005;8:76–93.

    CAS  PubMed  Google Scholar 

  86. African Journal of Pharmacy and Pharmacology. Academic Journals; 2007.

  87. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494:643–50 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378517315300855. [cited 2018 Jul 13].

    CAS  PubMed  Google Scholar 

  88. Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan K-W, Alhnan MA. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res. 2016;33:2704–12.

    CAS  PubMed  Google Scholar 

  89. Khaled SA, Alexander MR, Wildman RD, Wallace MJ, Sharpe S, Yoo J, et al. 3D extrusion printing of high drug loading immediate release paracetamol tablets. Int J Pharm. 2018;538:223–30.

    CAS  PubMed  Google Scholar 

  90. McConnell EL, Liu F, Basit AW. Colonic treatments and targets: issues and opportunities. J Drug Target. 2009;17:335–63.

    CAS  PubMed  Google Scholar 

  91. Gionchetti P, Praticò C, Rizzello F, Calafiore A, Capozzi N, Campieri M, et al. The role of budesonide-MMX in active ulcerative colitis. Expert Rev Gastroenterol Hepatol Taylor & Francis. 2014;8:215–22.

    CAS  Google Scholar 

  92. Wang W, Kang Q, Liu N, Zhang Q, Zhang Y, Li H, et al. Enhanced dissolution rate and oral bioavailability of Ginkgo biloba extract by preparing solid dispersion via hot-melt extrusion. Fitoterapia. 2015;102:189–97.

    PubMed  Google Scholar 

  93. Jamroz W, Kurek M, Lyszczarz E, Brniak W, Jachowicz R. Printing techniques: recent developments in pharmaceutical technology. Acta Pol Pharm. 2017;74:753–63.

    CAS  PubMed  Google Scholar 

  94. Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems—a passing fad or the future? Adv Drug Deliv Rev. 2018;132:139–68.

    CAS  PubMed  Google Scholar 

  95. Öblom H, Zhang J, Pimparade M, Speer I, Preis M, Repka M, et al. 3D-Printed isoniazid tablets for the treatment and prevention of tuberculosis—personalized dosing and drug release. AAPS PharmSciTech. Springer International Publishing. 2019;20:52.

    PubMed  Google Scholar 

  96. Solutions F. POLYOXΚ™ water soluble resins combining flexibility with consistency.

  97. Smith D, Kapoor Y, Hermans A, Nofsinger R, Kesisoglou F, Gustafson TP, et al. 3D printed capsules for quantitative regional absorption studies in the GI tract. Int J Pharm. 2018;550:418–28.

    CAS  PubMed  Google Scholar 

  98. Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci Elsevier Ltd. 2018;107:1076–85.

    CAS  Google Scholar 

  99. Home—British Pharmacopoeia. 2017.

  100. Goyanes A, Wang J, Buanz A, Martínez-Pacheco R, Telford R, Gaisford S, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm American Chemical Society. 2015;12:4077–84.

    CAS  Google Scholar 

  101. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17:20–42.

    CAS  PubMed  Google Scholar 

  102. Shah S, Repka MA. Melt extrusion in drug delivery: three decades of progress. New York: Springer; 2013. p. 3–46.

    Google Scholar 

  103. Jamróz W, Kurek M, Łyszczarz E, Szafraniec J, Knapik-Kowalczuk J, Syrek K, et al. 3D printed orodispersible films with aripiprazole. Int J Pharm. Elsevier. 2017;533:413–20.

    PubMed  Google Scholar 

  104. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. Elsevier. 2016;90:53–63.

    CAS  PubMed  Google Scholar 

  105. Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. Elsevier. 2016;509:255–63.

    CAS  PubMed  Google Scholar 

  106. Qi S, Craig D. Recent developments in micro- and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms. Adv Drug Deliv Rev. Elsevier. 2016;100:67–84.

    CAS  PubMed  Google Scholar 

  107. Attaran M. The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus Horiz. Elsevier. 2017;60:677–88.

    Google Scholar 

  108. Gebhardt A, Hötter J-S, Gebhardt A, Hötter J-S. Rapid prototyping. Addit Manuf Hanser. 2016:291–352.

  109. Pîrjan A, Petroşanu D-M. The impact of 3d printing technology on the society and economy. J Inf Syst Oper Manag. Romanian-American University. 2013;7:360–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manisha Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, M., Choudhury, H., Fern, J.L.C. et al. 3D printing for oral drug delivery: a new tool to customize drug delivery. Drug Deliv. and Transl. Res. 10, 986–1001 (2020). https://doi.org/10.1007/s13346-020-00737-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00737-0

Keywords

Navigation