Skip to main content

Advertisement

Log in

C-di-GMP with influenza vaccine showed enhanced and shifted immune responses in microneedle vaccination in the skin

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

A microneedle is a biomedical device which consists of multiple micron scale needles. It is widely used in various fields to deliver drugs and vaccines to the skin effectively. However, when considering improved vaccine efficacy in microneedle vaccination, it is important to find an appropriate adjuvant that is able to be used in transdermal delivery. Herein, we demonstrated the applicability of c-di-GMP, which is a stimulator of interferon genes (STING) agonist, as an adjuvant for influenza microneedle vaccination. Thus, 2 and 10 μg of GMP with the influenza vaccine were coated onto a microneedle, and then, BALB/c mice were immunized with the coated microneedle to investigate the immunogenicity and protection efficacy of the influenza microneedle vaccination. As a result, the adjuvant groups had an enhanced IgG response, IgG subtypes and HI titer compared to the vaccine only group. In addition to the humoral immunity, the use of an adjuvant has also been shown to improve the cellular immune response. In a challenge study, adjuvant groups had a 100% survival rate and rapid weight recovery. Taken together, this study confirms that GMP is an effective adjuvant for influenza microneedle vaccination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nichol KL, Lind A, Margolis KL, Murdoch M, McFadden R, Hauge M, et al. The effectiveness of vaccination against influenza in healthy, working adults. New Engl J Med. 1995;333(14):889–93.

    CAS  PubMed  Google Scholar 

  2. Nabel GJ. Designing tomorrow's vaccines. New Engl J Med. 2013;368(6):551–60.

    CAS  PubMed  Google Scholar 

  3. Bridges CB, Thompson WW, Meltzer MI, Reeve GR, Talamonti WJ, Cox NJ, et al. Effectiveness and cost-benefit of influenza vaccination of healthy working adults: a randomized controlled trial. JAMA. 2000;284(13):1655–63.

  4. Osterholm MT, Kelley NS, Sommer A, Belongia EA. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(1):36–44.

    PubMed  Google Scholar 

  5. Palese P. Influenza: old and new threats. Nat Med. 2004;10(12s):S82.

    CAS  PubMed  Google Scholar 

  6. Nichol KL. The efficacy, effectiveness and cost-effectiveness of inactivated influenza virus vaccines. Vaccine. 2003;21(16):1769–75.

    PubMed  Google Scholar 

  7. Krammer F, Palese P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 2015;14(3):167–82.

    CAS  PubMed  Google Scholar 

  8. Kang S-M, Song J-M, Kim Y-C. Microneedle and mucosal delivery of influenza vaccines. Expert Rev Vaccines. 2012;11(5):547–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev. 2006;58(1):68–89.

    CAS  PubMed  Google Scholar 

  10. Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rejinold NS, Shin J-H, Seok HY, Kim Y-C. Biomedical applications of microneedles in therapeutics: recent advancements and implications in drug delivery. Expert Opin Drug Deliv. 2016;13(1):109–31.

    CAS  PubMed  Google Scholar 

  12. Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, Almagor Y, Sharon O, Levin Y. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine. 2009;27(3):454–9.

    PubMed  Google Scholar 

  13. Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227–37.

    CAS  PubMed  Google Scholar 

  14. Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res. 2007;24(7):1369–80.

    CAS  PubMed  Google Scholar 

  15. Quan F-S, Kim Y-C, Song J-M, Hwang HS, Compans RW, Prausnitz MR, et al. Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch. Clin Vaccine Immunol. 2013;20(9):1433–9.

  16. Shin J-H, Park J-K, Lee D-H, Quan F-S, Song C-S, Kim Y-C. Microneedle vaccination elicits superior protection and antibody response over intranasal vaccination against swine-origin influenza a (H1N1) in mice. PLoS One. 2015;10(6):e0130684.

    PubMed  PubMed Central  Google Scholar 

  17. Kim Y-C, Quan F-S, Compans RW, Kang S-M, Prausnitz MR. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release. 2010;142(2):187–95.

    CAS  PubMed  Google Scholar 

  18. Koutsonanos DG, del Pilar MM, Zarnitsyn VG, Sullivan SP, Compans RW, Prausnitz MR, et al. Transdermal influenza immunization with vaccine-coated microneedle arrays. PLoS One. 2009;4(3):e4773.

    PubMed  PubMed Central  Google Scholar 

  19. Weldon WC, Zarnitsyn VG, Esser ES, Taherbhai MT, Koutsonanos DG, Vassilieva EV, et al. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine. PLoS One. 2012;7(7):e41501.

  20. Plotkin S. History of vaccination. Proc Natl Acad Sci. 2014;111(34):12283–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mbow ML, De Gregorio E, Valiante NM, Rappuoli R. New adjuvants for human vaccines. Curr Opin Immunol. 2010;22(3):411–6.

    CAS  PubMed  Google Scholar 

  22. Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm. 2008;364(2):272–80.

    CAS  PubMed  Google Scholar 

  23. Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw. 2015;15(2):51–7.

    PubMed  PubMed Central  Google Scholar 

  24. Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol. 2009;30(1):23–32.

    CAS  PubMed  Google Scholar 

  25. O’Hagan DT, De Gregorio E. The path to a successful vaccine adjuvant–‘the long and winding road’. Drug Discov Today. 2009;14(11–12):541–51.

    PubMed  Google Scholar 

  26. Ellebedy AH, Ahmed R. Antiviral Vaccines: Challenges and Advances. The Vaccine Book (Second Edition). Elsevier; 2016. p. 283–310.

  27. Mitragotri S. Immunization without needles. Nat Rev Immunol. 2005;5(12):905–16.

    CAS  PubMed  Google Scholar 

  28. Hickling J, Jones R. Intradermal delivery of vaccines: a review of the literature and the potential for development for use in low-and middle-income countries. Program for Appropriate Technology in Health (PATH), Ferney Voltaire. 2009.

  29. Freytag LC, Clements JD. Mucosal Adjuvants: New Developments and Challenges. Mucosal Immunology (Fourth Edition). Elsevier; 2015. p. 1183–1199.

  30. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–608.

    CAS  PubMed  Google Scholar 

  31. Vogelbruch M, Nuss B, Körner M, Kapp A, Kiehl P, Bohm W. Aluminium-induced granulomas after inaccurate intradermal hyposensitization injections of aluminium-adsorbed depot preparations. Allergy. 2000;55(9):883–7.

    CAS  PubMed  Google Scholar 

  32. Pittman PR. Aluminum-containing vaccine associated adverse events: role of route of administration and gender. Vaccine. 2002;20:S48–50.

    CAS  PubMed  Google Scholar 

  33. Bal SM, Slütter B, Verheul R, Bouwstra JA, Jiskoot W. Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant-and site-dependent immunogenicity in mice. Eur J Pharm Sci. 2012;45(4):475–81.

    CAS  PubMed  Google Scholar 

  34. Slütter B, Bal SM, Ding Z, Jiskoot W, Bouwstra JA. Adjuvant effect of cationic liposomes and CpG depends on administration route. J Control Release. 2011;154(2):123–30.

    PubMed  Google Scholar 

  35. Zuber AK, Bråve A, Engström G, Zuber B, Ljungberg K, Fredriksson M, et al. Topical delivery of imiquimod to a mouse model as a novel adjuvant for human immunodeficiency virus (HIV) DNA. Vaccine. 2004;22(13–14):1791–8.

    CAS  PubMed  Google Scholar 

  36. D'Argenio DA, Miller SI. Cyclic di-GMP as a bacterial second messenger. Microbiology. 2004;150(8):2497–502.

    CAS  PubMed  Google Scholar 

  37. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, et al. STING is a direct innate immune sensor of cyclic-di-GMP. Nature. 2011;478(7370):515.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen W, KuoLee R, Yan H. The potential of 3′, 5′-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine. 2010;28(18):3080–5.

    CAS  PubMed  Google Scholar 

  39. Karaolis DK, Means TK, Yang D, Takahashi M, Yoshimura T, Muraille E, et al. Bacterial c-di-GMP is an immunostimulatory molecule. J Immunol. 2007;178(4):2171–81.

    CAS  PubMed  Google Scholar 

  40. Ogunniyi AD, Paton JC, Kirby AC, McCullers JA, Cook J, Hyodo M, et al. C-di-GMP is an effective immunomodulator and vaccine adjuvant against pneumococcal infection. Vaccine. 2008;26(36):4676–85.

  41. Ebensen T, Schulze K, Riese P, Link C, Morr M, Guzmán CA. The bacterial second messenger cyclic diGMP exhibits potent adjuvant properties. Vaccine. 2007;25(8):1464–9.

    CAS  PubMed  Google Scholar 

  42. Hu D-L, Narita K, Hyodo M, Hayakawa Y, Nakane A, Karaolis DK. C-di-GMP as a vaccine adjuvant enhances protection against systemic methicillin-resistant Staphylococcus aureus (MRSA) infection. Vaccine. 2009;27(35):4867–73.

    CAS  PubMed  Google Scholar 

  43. Wang J, Li P, Wu MX. Natural STING agonist as an “ideal” adjuvant for cutaneous vaccination. J Invest Dermatol. 2016;136(11):2183–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shakya AK, Lee CH, Uddin MJ, Gill HS. Assessment of Th1/Th2 Bias of STING agonists coated on microneedles for possible use in skin allergen immunotherapy. Mol Pharm. 2018;15(11):5437–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yan H, KuoLee R, Tram K, Qiu H, Zhang J, Patel GB, et al. 3′, 5′-cyclic diguanylic acid elicits mucosal immunity against bacterial infection. Biochem Biophys Res Commun. 2009;387(3):581–4.

    CAS  PubMed  Google Scholar 

  46. Ebensen T, Schulze K, Riese P, Morr M, Guzmán CA. The bacterial second messenger cdiGMP exhibits promising activity as a mucosal adjuvant. Clin Vaccine Immunol. 2007;14(8):952–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Madhun AS, Haaheim LR, Nøstbakken JK, Ebensen T, Chichester J, Yusibov V, et al. Intranasal c-di-GMP-adjuvanted plant-derived H5 influenza vaccine induces multifunctional Th1 CD4+ cells and strong mucosal and systemic antibody responses in mice. Vaccine. 2011;29(31):4973–82.

    CAS  PubMed  Google Scholar 

  48. Svindland SC, Pedersen GK, Pathirana RD, Bredholt G, Nøstbakken JK, Jul-Larsen Å, et al. A study of chitosan and c-di-GMP as mucosal adjuvants for intranasal influenza H5N1 vaccine. Influenza Other Respir Viruses. 2013;7(6):1181–93.

  49. Luo Y, Zhou J, Watt SK, Lee VT, Dayie TK, Sintim HO. Differential binding of 2′-biotinylated analogs of c-di-GMP with c-di-GMP riboswitches and binding proteins. Mol BioSyst. 2012;8(3):772–8.

    CAS  PubMed  Google Scholar 

  50. Noah DL, Hill H, Hines D, White EL, Wolff MC. Qualification of the hemagglutination inhibition assay in support of pandemic influenza vaccine licensure. Clin Vaccine Immunol. 2009;16(4):558–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim Y-C, Yoo D-G, Compans RW, Kang S-M, Prausnitz MR. Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles. J Control Release. 2013;172(2):579–88.

    CAS  PubMed  Google Scholar 

  52. Huber VC, McKeon RM, Brackin MN, Miller LA, Keating R, Brown SA, et al. Distinct contributions of vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to protective immunity against influenza. Clin Vaccine Immunol. 2006;13(9):981–90.

  53. Shin J-H, Noh J-Y, Kim K-H, Park J-K, Lee J-H, Jeong SD, et al. Effect of zymosan and poly (I: C) adjuvants on responses to microneedle immunization coated with whole inactivated influenza vaccine. J Control Release. 2017.

  54. Cox R, Brokstad K, Ogra P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol. 2004;59(1):1–15.

    CAS  PubMed  Google Scholar 

  55. Pedersen GK, Ebensen T, Gjeraker IH, Svindland S, Bredholt G, Guzman CA, et al. Evaluation of the sublingual route for administration of influenza H5N1 virosomes in combination with the bacterial second messenger c-di-GMP. PLoS One. 2011;6(11):e26973.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Benoit A, Beran J, Devaster J-M, Esen M, Launay O, Leroux-Roels G et al., editors. Hemagglutination inhibition antibody titers as a correlate of protection against seasonal A/H3N2 influenza disease. Open forum infectious diseases; 2015: Oxford University Press.

  57. Major D, Chichester JA, Pathirana RD, Guilfoyle K, Shoji Y, Guzman CA, et al. Intranasal vaccination with a plant-derived H5 HA vaccine protects mice and ferrets against highly pathogenic avian influenza virus challenge. Hum Vaccin Immunother. 2015;11(5):1235–43.

  58. Quan F-S, Compans RW, Nguyen HH, Kang S-M. Induction of heterosubtypic immunity to influenza virus by intranasal immunization. J Virol. 2008;82(3):1350–9.

    CAS  PubMed  Google Scholar 

  59. Thomas PG, Keating R, Hulse-Post DJ, Doherty PC. Cell-mediated protection in influenza infection. Emerg Infect Dis. 2006;12(1):48.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Quan F-S, Kim Y-C, Yoo D-G, Compans RW, Prausnitz MR, Kang S-M. Stabilization of influenza vaccine enhances protection by microneedle delivery in the mouse skin. PLoS One. 2009;4(9):e7152.

    PubMed  PubMed Central  Google Scholar 

  61. Sullivan SP, Koutsonanos DG, del Pilar MM, Lee JW, Zarnitsyn V, Choi S-O, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16(8):915–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Koutsonanos DG, Vassilieva EV, Stavropoulou A, Zarnitsyn VG, Esser ES, Taherbhai MT, et al. Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection. Sci Rep. 2012;2:357.

    PubMed  PubMed Central  Google Scholar 

  63. Koutsonanos DG, Vassilieva EV, Stavropoulou A, Zarnitsyn VG, Esser ES, Taherbhai MT, et al. Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection. Sci Rep. 2012;2.

  64. Califano D, Furuya Y, Roberts S, Avram D, McKenzie AN, Metzger DW. IFN-γ increases susceptibility to influenza a infection through suppression of group II innate lymphoid cells. Mucosal Immunol. 2018;11(1):209–19.

    CAS  PubMed  Google Scholar 

  65. del Pilar MM, Weldon WC, Zarnitsyn VG, Koutsonanos DG, Akbari H, Skountzou I, et al. Local response to microneedle-based influenza immunization in the skin. MBio. 2012;3(2):e00012–2.

  66. Hanson MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, Chen SH, et al. Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants. J Clin Invest. 2015;125(6):2532–46.

  67. Gray PM, Forrest G, Wisniewski T, Porter G, Freed DC, DeMartino JA, et al. Evidence for cyclic diguanylate as a vaccine adjuvant with novel immunostimulatory activities. Cell Immunol. 2012;278(1–2):113–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Science and ICT of Korea (NRF-2019R1A4A1024116, NRF-2019R1A2C2085962, and NRF-2018M3A9E2024583).

Ethics statement

All animal procedures conducted in this paper (permit number: KU16163) were reviewed, approved, and supervised by the Institutional Animal Care and Use Committee of Konkuk University.

Conflict of interest

All of authors do not have conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Seon Song or Yeu-Chun Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, JH., Lee, JH., Jeong, S.D. et al. C-di-GMP with influenza vaccine showed enhanced and shifted immune responses in microneedle vaccination in the skin. Drug Deliv. and Transl. Res. 10, 815–825 (2020). https://doi.org/10.1007/s13346-020-00728-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00728-1

Keywords

Navigation